sage: R = PolynomialRing(QQ, 4, 'abcd', order='lp') sage: a,b,c,d = R.gens() sage: I = (a+b+c+d, a*b+a*d+b*c+c*d, a*b*c+a*b*d+a*c*d+b*c*d, a*b*c*d-1)*R; I Ideal (a + b + c + d, a*b + a*d + b*c + c*d, a*b*c + a*b*d + a*c*d + b*c*d, a*b*c*d - 1) of Multivariate Polynomial Ring in a, b, c, d over Rational Field sage: B = I.groebner_basis(); B [c^2*d^6 - c^2*d^2 - d^4 + 1, c^3*d^2 + c^2*d^3 - c - d, b*d^4 - b + d^5 - d, b*c - b*d + c^2*d^4 + c*d - 2*d^2, b^2 + 2*b*d + d^2, a + b + c + d]
You can work with multiple rings without having to switch back and forth like in Singular. For example,
sage: a,b,c = QQ['a,b,c'].gens() sage: X,Y = GF(7)['X,Y'].gens() sage: I = ideal(a, b^2, b^3+c^3) sage: J = ideal(X^10 + Y^10) sage: I.minimal_associated_primes () [Ideal (c, b, a) of Multivariate Polynomial Ring in a, b, c over Rational Field] sage: J.minimal_associated_primes () # slightly random output [Ideal (Y^4 + 3*X*Y^3 + 4*X^2*Y^2 + 4*X^3*Y + X^4) of Multivariate Polynomial Ring in X, Y over Finite Field of size 7, Ideal (Y^4 + 4*X*Y^3 + 4*X^2*Y^2 + 3*X^3*Y + X^4) of Multivariate Polynomial Ring in X, Y over Finite Field of size 7, Ideal (Y^2 + X^2) of Multivariate Polynomial Ring in X, Y over Finite Field of size 7]
Sage also includes gfan
which provides other fast algorithms
for computing Gröbner bases. See the section on ``Gröbner fans''
in the Sage Reference Manual for more details.
See About this document... for information on suggesting changes.