Though much of Sage is implemented using Python, no Python background is needed to read this tutorial. You will want to learn Python (a very fun language!) at some point, and there are many excellent free resources for doing so including [PyT] and [Dive]. If you just want to quickly try out Sage, this tutorial is the place to start. For example:
sage: 2 + 2 4 sage: factor(-2007) -1 * 3^2 * 223 sage: A = matrix(4,4, range(16)); A [ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11] [12 13 14 15] sage: factor(A.charpoly()) x^2 * (x^2 - 30*x - 80) sage: m = matrix(ZZ,2, range(4)) sage: m[0,0] = m[0,0] - 3 sage: m [-3 1] [ 2 3] sage: E = EllipticCurve([1,2,3,4,5]); sage: E Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 4*x + 5 over Rational Field sage: E.anlist(10) [0, 1, 1, 0, -1, -3, 0, -1, -3, -3, -3] sage: E.rank() 1 sage: k = 1/(sqrt(3)*I + 3/4 + sqrt(73)*5/9); print k 1 --------------------------- 5 sqrt(73) 3 sqrt(3) I + ---------- + - 9 4 sage: N(k) 0.165495678130644 - 0.0521492082074256*I sage: N(k,30) # 30 "bits" 0.16549568 - 0.052149208*I sage: latex(k) \frac{1}{{\sqrt{ 3 } i} + \frac{{5 \sqrt{ 73 }}}{9} + \frac{3}{4}}