Module: sage.plot.plot3d.plot3d
Plotting Functions.
sage: def f(x,y): ... return math.sin(y*y+x*x)/math.sqrt(x*x+y*y+.0001) ... sage: P = plot3d(f,(-3,3),(-3,3), adaptive=True, color=rainbow(60, 'rgbtuple'), max_bend=.1, max_depth=15) sage: P.show()
sage: def f(x,y): ... return math.exp(x/5)*math.sin(y) ... sage: P = plot3d(f,(-5,5),(-5,5), adaptive=True, color=['red','yellow']) sage: from sage.plot.plot3d.plot3d import axes sage: S = P + axes(6, color='black') sage: S.show()
We plot ``cape man'':
sage: S = sphere(size=.5, color='yellow')
sage: from sage.plot.plot3d.shapes import Cone sage: S += Cone(.5, .5, color='red').translate(0,0,.3)
sage: S += sphere((.45,-.1,.15), size=.1, color='white') + sphere((.51,-.1,.17), size=.05, color='black') sage: S += sphere((.45, .1,.15),size=.1, color='white') + sphere((.51, .1,.17), size=.05, color='black') sage: S += sphere((.5,0,-.2),size=.1, color='yellow') sage: def f(x,y): return math.exp(x/5)*math.cos(y) sage: P = plot3d(f,(-5,5),(-5,5), adaptive=True, color=['red','yellow'], max_depth=10) sage: cape_man = P.scale(.2) + S.translate(1,0,0) sage: cape_man.show(aspect_ratio=[1,1,1])
Author Log:
Module-level Functions
[scale=1], [radius=None]) |
f, urange, vrange, [adaptive=False]) |
Input:
NOTE: mesh and dots are not supported when using the Tachyon raytracer renderer.
We plot a 3d function defined as a Python function:
sage: plot3d(lambda x, y: x^2 + y^2, (-2,2), (-2,2))
We plot the same 3d function but using adaptive refinement:
sage: plot3d(lambda x, y: x^2 + y^2, (-2,2), (-2,2), adaptive=True)
Adaptive refinement but with more points:
sage: plot3d(lambda x, y: x^2 + y^2, (-2,2), (-2,2), adaptive=True, initial_depth=5)
We plot some 3d symbolic functions:
sage: x, y = var('x,y') sage: plot3d(x^2 + y^2, (x,-2,2), (y,-2,2)) sage: plot3d(sin(x*y), (x, -pi, pi), (y, -pi, pi))
A 3d plot with a mesh:
sage: var('x,y') (x, y) sage: plot3d(sin(x-y)*y*cos(x),(x,-3,3),(y,-3,3), mesh=True)
Two wobby translucent planes:
sage: x,y = var('x,y') sage: P = plot3d(x+y+sin(x*y), (x,-10,10),(y,-10,10), opacity=0.87, color='blue') sage: Q = plot3d(x-2*y-cos(x*y),(x,-10,10),(y,-10,10),opacity=0.3,color='red') sage: P + Q
We draw two parametric surfaces and a transparent plane:
sage: L = plot3d(lambda x,y: 0, (-5,5), (-5,5), color="lightblue", opacity=0.8) sage: P = plot3d(lambda x,y: 4 - x^3 - y^2, (-2,2), (-2,2), color='green') sage: Q = plot3d(lambda x,y: x^3 + y^2 - 4, (-2,2), (-2,2), color='orange') sage: L + P + Q
We draw the "Sinus" function (water ripple-like surface):
sage: x, y = var('x y') sage: plot3d(sin(pi*(x^2+y^2))/2,(x,-1,1),(y,-1,1))
Hill and valley (flat surface with a bump and a dent):
sage: x, y = var('x y') sage: plot3d( 4*x*exp(-x^2-y^2), (x,-2,2), (y,-2,2))
f, x_range, y_range, [color=automatic], [grad_f=None], [max_bend=0.5], [max_depth=5], [initial_depth=4], [num_colors=128]) |
Adaptive 3d plotting of a function of two variables.
This is used internally by the plot3d command when the option
adaptive=True
is given.
Input:
We plot
:
sage: from sage.plot.plot3d.plot3d import plot3d_adaptive sage: x,y=var('x,y'); plot3d_adaptive(sin(x*y), (x,-pi,pi), (y,-pi,pi), initial_depth=5)
Class: TrivialTriangleFactory
Functions: smooth_triangle,
triangle