Module: sage.structure.formal_sum
Formal sums
Author Log:
sage: A = FormalSum([(1, 2/3)]); A 2/3 sage: B = FormalSum([(3, 1/5)]); B 3*1/5 sage: -B -3*1/5 sage: A + B 3*1/5 + 2/3 sage: A - B -3*1/5 + 2/3 sage: B*3 9*1/5 sage: 2*A 2*2/3 sage: list(2*A + A) [(3, 2/3)]
Module-level Functions
R) |
Class: FormalSum
self, x, [parent=Abelian Group of all Formal Finite Sums over Integer Ring], [check=True], [reduce=True]) |
Functions: reduce
Special Functions: __cmp__,
__getitem__,
__init__,
__iter__,
__len__,
_add_,
_latex_,
_lmul_,
_neg_,
_repr_,
_rmul_
Class: FormalSums_generic
self, [base=Integer Ring]) |
Functions: base_extend,
base_extend_canonical_sym,
get_action_impl
self, other, op, self_is_left) |
sage: A = FormalSums(RR).get_action(RR); A Right scalar multiplication by Real Field with 53 bits of precision on Abelian Group of all Formal Finite Sums over Real Field with 53 bits of precision
sage: A = FormalSums(ZZ).get_action(QQ); A Right scalar multiplication by Rational Field on Abelian Group of all Formal Finite Sums over Rational Field with precomposition on left by Coercion morphism: From: Abelian Group of all Formal Finite Sums over Integer Ring To: Abelian Group of all Formal Finite Sums over Rational Field sage: A = FormalSums(QQ).get_action(ZZ); A Right scalar multiplication by Integer Ring on Abelian Group of all Formal Finite Sums over Rational Field
Special Functions: __call__,
__cmp__,
__init__,
_an_element_impl,
_coerce_impl,
_repr_
See About this document... for information on suggesting changes.