sage: var('x k w') (x, k, w) sage: f = x^3 * e^(k*x) * sin(w*x); f x^3*e^(k*x)*sin(w*x) sage: f.diff(x) k*x^3*e^(k*x)*sin(w*x) + 3*x^2*e^(k*x)*sin(w*x) + w*x^3*e^(k*x)*cos(w*x) sage: print diff(f, x) 3 k x 2 k x 3 k x k x e sin(w x) + 3 x e sin(w x) + w x e cos(w x) sage: latex(f.diff(x)) {{{k {x}^{3} } {e}^{{k x}} } \sin \left( {w x} \right)} + {{{3 {x}^{2} } {e}^{{k x}} } \sin \left( {w x} \right)} + {{{w {x}^{3} } {e}^{{k x}} } \cos \left( {w x} \right)}
view(f.diff('x'))
another window will
open up displaying the compiled LaTeX output.
In the Sage notebook, you can enter
f = maxima('x^3 * %e^(k*x) * sin(w*x)') show(f) show(f.diff('x'))
shift-enter
for a similar result.
You can also call Maxima indirectly using the commands
R = PolynomialRing(QQ,"x") x = R.gen() p = x^2 + 1 show(p.derivative()) show(p.integral())
sage: R = PolynomialRing(QQ,"x") sage: x = R.gen() sage: p = x^2 + 1 sage: view(p.derivative()) #optional sage: view(p.integral()) #optional