13.2 $ j$ -invariant

How do you compute the $ j$ -invariant of an elliptic curve in Sage?

Other methods associated to the EllipticCurve class are j_invariant, discriminant, and weierstrass_model. Here is an example of their syntax.

sage: E = EllipticCurve([0, -1, 1, -10, -20])
sage: E
Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field
sage: E.j_invariant()
-122023936/161051
sage: E.short_weierstrass_model()
Elliptic Curve defined by y^2  = x^3 - 13392*x - 1080432 over Rational Field
sage: E.discriminant()
-161051
sage: E = EllipticCurve(GF(5),[0, -1, 1, -10, -20])
sage: E.short_weierstrass_model()
Elliptic Curve defined by y^2  = x^3 + 3*x + 3 over Finite Field of size 5
sage: E.j_invariant()
4

See About this document... for information on suggesting changes.