Module: sage.modular.modform.vm_basis
The Victor Miller Basis
Module-level Functions
[prec=10], [var=q], [K=Integer Ring]) |
Return the q-expansion of Delta as a power series with coefficients in K (=ZZ by default).
Input:
ALGORITHM: Compute a simple very explicit modular form whose 8th power is Delta. Then compute the 8th power using NTL polynomial arithmetic, which is VERY fast. This function computes a *million* terms of Delta in under a minute.
sage: delta_qexp(7) q - 24*q^2 + 252*q^3 - 1472*q^4 + 4830*q^5 - 6048*q^6 + O(q^7) sage: delta_qexp(7,'z') z - 24*z^2 + 252*z^3 - 1472*z^4 + 4830*z^5 - 6048*z^6 + O(z^7) sage: delta_qexp(-3) Traceback (most recent call last): ... ValueError: prec must be positive
Author Log:
k, [prec=10], [cusp_only=False], [var=q]) |
Compute and return the Victor-Miller basis for
modular forms of weight k and level 1 to precision
. if
cusp_only
is True, return
only a basis for the cuspidal subspace.
Input:
sage: victor_miller_basis(1, 6) [] sage: victor_miller_basis(0, 6) [ 1 + O(q^6) ] sage: victor_miller_basis(2, 6) [] sage: victor_miller_basis(4, 6) [ 1 + 240*q + 2160*q^2 + 6720*q^3 + 17520*q^4 + 30240*q^5 + O(q^6) ]
sage: victor_miller_basis(6, 6, var='w') [ 1 - 504*w - 16632*w^2 - 122976*w^3 - 532728*w^4 - 1575504*w^5 + O(w^6) ]
sage: victor_miller_basis(6, 6) [ 1 - 504*q - 16632*q^2 - 122976*q^3 - 532728*q^4 - 1575504*q^5 + O(q^6) ] sage: victor_miller_basis(12, 6) [ 1 + 196560*q^2 + 16773120*q^3 + 398034000*q^4 + 4629381120*q^5 + O(q^6), q - 24*q^2 + 252*q^3 - 1472*q^4 + 4830*q^5 + O(q^6) ]
sage: victor_miller_basis(12, 6, cusp_only=True) [ q - 24*q^2 + 252*q^3 - 1472*q^4 + 4830*q^5 + O(q^6) ] sage: victor_miller_basis(24, 6, cusp_only=True) [ q + 195660*q^3 + 12080128*q^4 + 44656110*q^5 + O(q^6), q^2 - 48*q^3 + 1080*q^4 - 15040*q^5 + O(q^6) ] sage: victor_miller_basis(24, 6) [ 1 + 52416000*q^3 + 39007332000*q^4 + 6609020221440*q^5 + O(q^6), q + 195660*q^3 + 12080128*q^4 + 44656110*q^5 + O(q^6), q^2 - 48*q^3 + 1080*q^4 - 15040*q^5 + O(q^6) ] sage: victor_miller_basis(32, 6) [ 1 + 2611200*q^3 + 19524758400*q^4 + 19715347537920*q^5 + O(q^6), q + 50220*q^3 + 87866368*q^4 + 18647219790*q^5 + O(q^6), q^2 + 432*q^3 + 39960*q^4 - 1418560*q^5 + O(q^6) ]