Module: sage.modular.modform.ambient_g0
Modular Forms for
over
.
TESTS:
sage: m = ModularForms(Gamma0(389),6) sage: loads(dumps(m)) == m True
Class: ModularFormsAmbient_g0_Q
self, level, weight) |
Create a space of modular symbols for
of given
weight defined over
.
sage: m = ModularForms(Gamma0(11),4); m Modular Forms space of dimension 4 for Congruence Subgroup Gamma0(11) of weight 4 over Rational Field sage: type(m) <class 'sage.modular.modform.ambient_g0.ModularFormsAmbient_g0_Q'>
Functions: cuspidal_submodule,
eisenstein_submodule
self) |
Return the cuspidal submodule of this space of modular forms for
.
sage: m = ModularForms(Gamma0(33),4) sage: s = m.cuspidal_submodule(); s Cuspidal subspace of dimension 10 of Modular Forms space of dimension 14 for Congruence Subgroup Gamma0(33) of weight 4 over Rational Field sage: type(s) <class 'sage.modular.modform.cuspidal_submodule.CuspidalSubmodule_g0_Q'>
self) |
Return the Eisenstein submodule of this space of modular forms for
.
sage: m = ModularForms(Gamma0(389),6) sage: m.eisenstein_submodule() Eisenstein subspace of dimension 2 of Modular Forms space of dimension 163 for Congruence Subgroup Gamma0(389) of weight 6 over Rational Field
Special Functions: __init__
See About this document... for information on suggesting changes.