sage: var('f0 k x') (f0, k, x) sage: g = f0/sinh(k*x)^4 sage: g.taylor(x, 0, 3) f0/(k^4*x^4) - 2*f0/(3*k^2*x^2) + 11*f0/45 - 62*k^2*f0*x^2/945 sage: maxima(g).powerseries('x',0) 16*f0*('sum((2^(2*i1-1)-1)*bern(2*i1)*k^(2*i1-1)*x^(2*i1-1)/(2*i1)!,i1,0,inf))^4
view(g.powerseries('x',0))
.
The Maclaurin and power series of
:
sage: f = log(sin(x)/x) sage: f.taylor(x, 0, 10) -x^2/6 - x^4/180 - x^6/2835 - x^8/37800 - x^10/467775 sage: [bernoulli(2*i) for i in range(1,7)] [1/6, -1/30, 1/42, -1/30, 5/66, -691/2730] sage: maxima(f).powerseries(x,0) ('sum((-1)^i2*2^(2*i2)*bern(2*i2)*x^(2*i2)/(i2*(2*i2)!),i2,1,inf))/2
See About this document... for information on suggesting changes.