sewma.crit {spc}R Documentation

Compute critical values of EWMA control charts (variance charts)

Description

Computation of the critical values (similar to alarm limits) for different types of EWMA control charts monitoring (based on the sample variance S^2) monitoring normal variance.

Usage

sewma.crit(l,L0,sigma0=1,cu=NULL,hs=1,df,s2.on=TRUE,sided="upper",mode="fixed",r=40,qm=30)

Arguments

l smoothing parameter lambda of the EWMA control chart.
L0 in-control ARL.
sigma0 in-control standard deviation.
cu for two-sided (sided="two") and fixed upper control limit (mode="fixed") a value larger than sigma0 has to been given, for all other cases cu is ignored.
hs so-called headstart (give fast initial response).
df actual degrees of freedom, corresponds to batch size.
s2.on distinguish between S^2 and S chart.
sided distinguish between one- and two-sided two-sided EWMA-S^2 control charts by choosing "upper" (upper chart without reflection at cl – the actual value of cl is not used), "Rupper" (upper chart with reflection at cl), "Rlower" (lower chart with reflection at cu), and "two" (two-sided chart), respectively.
mode only deployed for sided="two" – with "fixed" an upper control limit (see cu) is set and only the lower is set to obtain the in-control ARL L0, while with "unbiased" a certain unbiasedness of the ARL function is guaranteed (here, both the lower and the upper control limit are calculated).
r dimension of the resulting linear equation system.
qm number of quadrature nodes.

Details

sewma.crit determines the critical values (similar to alarm limits) for given in-control ARL L0 by applying secant rule and using sewma.arl(). In case of sided="two" and mode="unbiased" a two-dimensional secant rule is applied that also ensures that the maximum of the ARL function for given standard deviation is attained at sigma0. See ? and the related example.

Value

Returns the lower and upper control limit cl and cu.

Author(s)

Sven Knoth

References

H.-J. Mittag and D. Stemann and B. Tewes (1998), {EWMA}-Karten zur {"U}berwachung der Streuung von Qualit{"a}tsmerkmalen, Allgemeines Statistisches Archiv 82, 327-338,

C. A. Acosta-Mej{'{i}}a and J. J. {Pignatiello Jr.} and B. V. Rao (1999), A comparison of control charting procedures for monitoring process dispersion, IIE Transactions 31, 569-579.

S. Knoth (2005), Accurate ARL computation for EWMA-S^2 control charts, Statistics and Computing 15, 341-352.

See Also

sewma.arl for calculation of ARL of variance charts.

Examples

## Mittag et al. (1998)
## compare their upper critical value 2.91 that
## leads to the upper control limit via the formula shown below
## (for the usual upper EWMA \eqn{S^2}{S^2})

l  <- 0.18
L0 <- 250
df <- 4
limits <- sewma.crit(l, L0, df=df)
limits["cu"]

limits.cu.mittag_et_al <- 1 + sqrt(l/(2-l))*sqrt(2/df)*2.91
limits.cu.mittag_et_al

## Knoth{2005}
## reproduce the critical value given in Figure 2 (c=1.661865) for
## upper EWMA \eqn{S^2}{S^2} with df=1

l  <- 0.025
L0 <- 250
df <- 1
limits <- sewma.crit(l, L0, df=df)
cv.Fig2 <- (limits["cu"]-1)/( sqrt(l/(2-l))*sqrt(2/df) )
cv.Fig2

## the small difference (sixth digit after decimal point) stems from
## tighter criterion in the secant rule implemented in the R package.

## demo of unbiased ARL curves
## Deploy, please, not matrix dimensions smaller than 50 -- for the
## sake of accuracy, the value 80 was used.
## Additionally, this example needs between 1 and 2 minutes on a 1.6 Ghz box. 

l  <- 0.1
L0 <- 500
df <- 4
limits <- sewma.crit(l, L0, df=df, sided="two", mode="unbiased", r=80)
SEWMA.arl <- Vectorize(sewma.arl, vectorize.args="sigma")
SEWMA.ARL <- function(sigma) 
  SEWMA.arl(l, limits[1], limits[2], sigma, df, sided="two", r=80)
layout(matrix(1:2, nrow=1))
curve(SEWMA.ARL, .75, 1.25, log="y")
curve(SEWMA.ARL, .95, 1.05, log="y")

[Package spc version 0.21 Index]