The Ferite Programming Language 1.0

Chris Ross

chris@ferite.org

The Ferite Programming Language 1.0
by Chris Ross

Copyright © 1999-2004 Chris Ross

This documentation is released under the same terms &sitbe library which can be found at http://www.ferite.org.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT

LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN

NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR

OTHER DEALINGS IN THE SOFTWARE.

This document is a re-write of an original document by Chris Ross (chris@ferite.org) and Blake Watters (sbw@ibiblio.org).

Thanks to Michael D Henderson (michael.d.henderson@Imco.com) for the numerous questions and typographical mistakes he has highlighted.

Table of Contents

I o o 18 ox] o U U PSSR PR PTP PPN 1
T 0 o T =Y 1S 1
1.2. What does this documentation ProVide2.........ccccveeeeieerievereeesere e eneens 1
1.3. Why Should | CHOOSIBIILE 2...ecueieeeeeceicee ettt sa e nns 1

2. LANQUAGE RETEIEINCE.......ci ittt s b e et st sttt st st neneebe e 2
P2 I o 1Y/ =T o 1T 1S 07 o S 2
p S 1ot o (= ST PSPPSRSO 2
P2 T @0 01 01T o1 £ S 3
P2 Y] o= ST USSP 3

T 11] oY o 4
B 1 o RSOOSR SUP TR 5
24,3 BITAY. ittt e E R R R et R e r e e e ne e 6
244, ODJECT et 7
BT o Lo BRSSP 7
Y = 4= o] =2 PSR 8
2.6, EXPIESSIONS.... .ottt sttt sttt ettt st b et b et bt b s st b et b et ekt bbbt et e b e b 10
2.6. 1. TrULN VAIUEBS.......eee ettt et 10
A © 0 1= =1 (0] =TT U O URTOTURRP 11
2.7.1. ArithmMetiC OPEIALOLS.ueiuiieeieeieierie ettt ettt ee bt e e sbe b e seeeeneas 11
2.7.2. BItWISE OPEIALOLS. ... ccuiitetereeeeiirierie ettt ettt st see e e s ae b sbe e s e sesbesbeseeseeeeneas 12
2.7.3. Incremental and Decremental OPEratars...........ccoceeeereererinenenieneeesese e 13
2.7.4. ASSIGNMENT OPEIALOLS.eeiueeiirierie sttt ettt st e e bbb ss e se b sbeseeseeeeneas 14
2.7.5. COMPAriSON OPEIALOLS......ecieeeiteieeiesteeeesteeeeste st e sae e seestesreessesreseestesseentesseensennes 15
A A ST o T[> @ 0 1= = (o T 16
A O A o 1= Q@ 0 1= = o S 16
A T O] 4] o1 1= Q@] o 1] = 1o 4 18
2.8. Statements and BIOCKS..........coi i 18
2.9. CONIIOI SITUCTUIES.....uieeteeete ettt sttt et st sttt sttt bttt ne b et 19
2.9.0. If, TREN AN EISE......cuiiieiiieieeieseese ettt st s ettt 19
b2 7 o o o | o 0SSP 21
2.9.3. Manipulating LOOPS.ccovierieeeeeisestesteeseeestestestestesesseesessessessessesseeesessessessessensnnens 22
2.9.4. EXCeption HANAIINGcoceieeeieise sttt st s st e et sneeenens 22
2.9.5. SWILCRN. ..ttt et e b e 23
pZ200 0 R 0 o 1o R 24
2.10.1. Variable Argument FUNCHONS..........ccviiirieneerrieresieese et 26
2.10.2. REtUrNING A VAIUEL.......cooiiirieiieree ettt st e 27
2.10.3. FUNCLION OVEFIOAAING.c.eeiieierieierieiireeie ettt 28
2.10.4. ONE LiNE FUNCLIONS......cci ettt e e e ne et seeeeneas 28
2.10.5. Pass BY REfEIENCE......cciieieecee e 28
2.11. ClasSes ANd ODJECLS.......cev ettt sttt sttt st b e en e 29
2.11.1. What iS @ CONSIIUCTOLZ..... oottt sttt st s eeneas 31
A I 2 o T] = T Lo = OSSPSR 31
2.11.3. StatiC MEMDEIS.......ooiieie ettt 34
2.11.4. Access Control: Public, Protected, Private, Abstract and Einal........................ 35
0 I T TR o (0] (T o] USSP 37

2.11.6. DYNAMIC ODJECISiiiitiiitiiricisieerie sttt ettt e b e sb e 38

2.11.7. Modifying EXIStING CIASSES........cceveiriiirieerieeresiesesiees ettt 39

2.12. NABMESPACES.....ccvierereeeeereerere ettt r et et r e bt s e se e s se et e st e r e r e rese e e eaeer e e nesreenen e eas 40
2.12.1. Modifying EXiStiNg NaMESPACES......c.ccereiririeririerenieesee et 41

2.13. CIOSUIES.....cteitieeitieete ettt e b e e b e e b et b et bbbt s e bt se e bt st ek et b et s b et b st b b e b e b 42
2.13.1. Recipients, Deliver and USING ... 44

2.14. USES AN INCIUAR.ecviecieeeteee ettt 46

2. 04,1 USBS..iiiiiitie et et s 46

2042, INCIUAE. ...ttt ettt b e s b e b e b e r e en e nnas 47

2.15. CONCIUSION......eieiiieeiiieete sttt et b et b et b et bbbt nn e en e 47

3. Solving Common Problems WIthferite ..o e 48

List of Tables

2-1. Control Characters Within Double QUOLE STHNGS........ccccevieieri e

Chapter 1. Introduction

1.1. What is ferite ?

ferite is a small robust scripting engine providing straight forward application integration, with the
ability for the API to be extended very easily. The design goaléefite are lightweight - small

memory and CPU footprint, fast, thread-safe, and straight forward both for the programmer of the parent
application and the programmer programmiegte scripts to learn the system.

1.2. What does this documentation provide?

This document is the official commentary fanite , including language information such as constructs
and known issues. An API guide for the standard objects provided with éréey distribution and
the means in which to embéetite are provided separately.

1.3. Why should | choose ferite ?

ferite is designed to be added into other applications. Providing a consistent API, your application will
be able to stay binary compatible with the latleste ~ engine, allowing you, the application
programmer, to add powerful scripting to your application without the worry of the internédstef

ferite provides a language very similar to that of C and Java with additional features from other
languages such as: closures from scheme and namespaces from C++. This means that the skill set
acquired through learning existing main-stream languages can be instantly applied to the creation of
ferite scripts.ferite is not a heavy language and prides itself on being clean and to the point; it is
easy to pick up a script written long ago and instantly understand what is going on, which, unfortunately,
can not be said for some other languages.

ferite provides a framework for creating structured programs: variables must be declared at the
beginning of a block, global variables must declared as such, critical variables and functions within a
thread can be clearly defined as thread-dafeée has classes, objects, namespaces, modules,
threading and exception handling. The scripts are more verbose than other langudgyéts butmakes

it easy to write, maintain and debug.

If you are looking for a scripting engine that is thread-safe, allowing for thread-safe use within an
application ferite is the way to go. Not only doderite remain thread-safe, it also uses the
operating systems native threads; you can now have scripts that run safely across multiple processors.

Chapter 2. Language Reference

2.1. Conventions Used

Within this document there are a number of conventions used to aid the delivery of examples when
discussing various parts of the language.

To write a complete example for each and every part of the language would be both confusing and over
kill. To aid the understanding of examples the following convention is used: There wilblsymbol

which means that the result of doing what is on the left hand side is on the right hand side. If you wish to
copy the example you must remove thand the text that follows it. E.g.

1+2»3

The above example demonstrates that the result of 1 + 2 is 3.

2.2. Scripts

A script file is a plain text file that usually ends.iie. Each file consists of three main parts:

» A set of imports using thaseskeyword to give you access to extra functionality (such as printing out
text, string or mathematic functions).

« Zero or more function, class and namespace declarations.

» The code to be executed when the script is first run. E.g. If you can have a script that does some
processing on each argument passed to it; you could have a loop going through each argument within
the startup code which calls a function you have declared in the middle section of a script.

For example:

/I The importing of extra functionality
uses "console", "array";

/I Declaration of a function. Classes and Namespaces also go here
function processArgument(string argument) {
Console.printin("Argument: " + argument);

}

/I The startup code
Array.each(argv) using (argument) {
processArgument(argument);

b

Chapter 2. Language Reference

First thing; do not worry if you do not understand the above code, you will know what it means at the
end of this manual.

Thestartup codeis what is called when the script is run. Tsiartup codeis equivalent to thenain
method within a C or Java program.

Having just shown you a more involved script, here is the fanibei World program:

uses “console";
Console.printin("Hello World from ferite");

The 'uses’ statement is used to import API either from an external module or from another script. Its use
is described in greater depth later on in this manual. You may be wondering why it takes two lines of
code to print out a line of texterite does not have any built in functions - they all have to be pulled in
by the programmer. The result? The only thing used witéiite is what you need.

2.3. Comments

Writing documentation is not fun, but, it can make your and others lives much easier in the long run.
Commenting code is the same boat. You can reduce the amount of commenting you do through the use
of meaningful variable, function and class names, and writing clear code. However, there are times when
it is not obvious what is happening within a block of code, which is when comments become important.

ferite supports two methods of commenting code: using block comments (/* */') or single line
comments (//). Block comments causete to ignore everything from the start of the comment '/*'

to the end of the comment */". Single line comments cafasiee to ignore everything from, and

including, the comment start '/’ to the end of the line. Comments can be used throughout the scripts you
are writing.

/I This is a single line comment
/*

This is another comment.

But it is for blocks.

And can span multiple lines.
*/

ferite can handle nested block comments. This allows easy commenting out of code regardless of the
comments or code that is within the block. Note that this is different from the default behavior of some
other languages.

/*
/* Print out some information */
Console.printin("Today");

*/

Chapter 2. Language Reference

2.4. Types

A type is a hint from you, the programmer, ftoite on how to look after and deal with your
information.ferite requires you to state the type of each variable or parameter you declare. This keeps
writing code and debugging easier becafesiee can stop you making mistakes - such as trying to add

a string to an object. There are a number of types within the type system which fall into two main
categories: simple typeaymber andstring) and complicated typesaifay , object andvoid).

In this section we talk about not only types but some operators and variables which are discussed later on
in the manual. It is suggested that you read this section and come back to it when you have made more
progress with the other chapters.

2.4.1. number

This type encapsulates all integer and floating point numbers within the 64bit IEEE specification and will
automatically handle issues regarding overflow and conversion. In layman terms that means that they can
store really big numbers and will convert between integer numbers (E.g. 1, 2, 14 - numbers without a
decimal point) and floating point numbers (E.g. 3.14, 23.5 - numbers with a decimal point). Once the
conversion has taken place, the number will remain a floating point number.

» All numbers start out as 64bit signed integers. When the value of a number goes above what can be
stored in 64bits, the number will switch over to being a 64bit floating point number (allowing for
much larger numbers; it should be noted that accuracy can potentially be tainted when this occurs).
This is also true if the value to be stored is a floating point value. The point where the switch occurs is
+-(2\64/2).

» Comparisons can be made between numbers but it should be noted that once a number has internally
become a floating point number, equality comparisons can potentially give unexpected results. To try
and solve this problem, when floating point numbers are being compared there is a slight amount of
tolerance involved which means that they do not need to be identical but very close in value. The
default tolerance i8.000001 At the time of writing the default tolerance can not be changed by the
programmer.

number someValue = 10;
number someOtherValue = 1.21;
number newValue = someValue + someOtherValue;

It is possible to use various different notations for numbers within a script. The different methods allow
for different number baseferite supports decimal, real, binary, octal and hexadecimal notation. Most
of the examples within this document use either decimal or real as they are easily recognized. These
notations all end up being stored the same internally, however there are times when it is more useful to
use either hexadecimal or binary to define values depending on what data you wish to manipulate. The
following examples demonstrate how to use the binary, octal and hexadecimal notations.

To define a binary number, a set of "1’ and '0’ should be prefixed with "0b’.

Chapter 2. Language Reference

number one Obl » one is the numerical value 1
number four 0b100 » four is the numerical value 4
number twentyone = 0b10101 » twentyone is the numerical value 21

To define an octal number, a set of numbers from '0’ to "7’ should be prefixed with '0’.

number one = 01 » one is the numerical value 1
number four = 04 » four is the numerical value 4
number twentyone = 025 » twentyone is the numerical value 21

To define a hexadecimal number, a set of numbers '0’ to '9’, and a set of alpha characters 'a’ to 'f’,
should be prefixed with a '0x’.

number one = 0x1 » one is the numerical value 1
number four = 0Ox4 » four is the numerical value 4
number twentyone = 0x15 » twentyone is the numerical value 21

Even though they provide different notations, the above should demonstraterhew interprets them
to numbers of the same value.

2.4.2. string

Strings are specified using double quote (") and contain a string of characters. It is possible to embed
variables and expressions within a string to make complex string construction easier (such as generating
XML). To access individual characters within a string you can use square brackets along with an index or
range. There are a number of control characters that can be used within a string to provide various
formatting options such as a tab or new line character. These control characters are described in the table
below:

Table 2-1. Control Characters Within Double Quote Strings

Control Character Output Notes
\n Adds a new line to the string | Non visible character
\r On windows this character
provides a line feed.
\t Adds a tab character to the stringlon visible character
\ "
\x?? Character with the hexadecimal e.g. \x20 would provide the space
value character. The question marks are
where the hexadecimal digits go.
\??? Character with the octal value |e.g.\040 would provide the space
character. The question marks
are where the octal digits go.

Chapter 2. Language Reference

Control Character Output Notes

\b??2?????? Output e.g. \b00100000 would provide
the space character. The questjon
marks are where the binary digits

go.
\a Audible bell Cause the computer to beep.
\f Form feed Tell the output to create a new
page.

You can reference variables or even place small expressions within a strings that get evaluated at
runtime. This allows for the complicated construction of strings to be less painful and easier to
understand. To reference a variable you simply prefix its name with a dollar symbol '$’. When the value
of the referenced variable is placed in the string, it is important to note that the string representation for
the variable will be used. For objects the functiostring() will be called and the return value used.

To place an expression within a string you can use a dollar symbol followed by a set of curly brackets '{
} with the expression between them. The following code will print out "Hello World" and then print out

2. Itis important to note that expressions within a string have effect outside. For instance-using

variable within the braces would cause the variable to remain incremented after the string is constructed.

string test = "Hello";
Console.printin("$test World");
Console.printin("${(1 + 1)}");

Strings can also be defined using single quotes (”). These strings differ from the double quote notation
because everything between the single quotes is use verbatim. As a result control characters are ignored
as well as embedded expressions. There is only one control code that is obeyed and thdtich will

insert a single quote within the string.

2.4.3. array

An array allows the sequential or random storage of data that can be retrieved at any point. They can
grow as you need them and are able to store any type of data within them; they are not limited to a
specific type meaning that numbers, string, objects and even arrays can be stored side by side. To access
the contents of an array you need to use a set of square brackets with a reference between them - this is
covered by the Index Operator.

When declared an array variable contains no elements. To add a value it is possible to use one of the
provided Array functions, use an set of empty square brackets or use the in-line array notation. The
second option allows you to pop a value onto the end of the array very easily and is demonstrated below.
The third allows you to create arrays using a very simple syntax: a comma separated list of values (they
can be expressions), surrounded in a set of square brackets.

aray a = [1, 2, 3]; // Declare an array 'a’ and initialize it to have 3 elements
a[] = 4; // Add the value '4’ to the end of the array
af] 5; /I Add the value '5’ to the end of the array

Chapter 2. Language Reference

The above code shows how to use an array in a linear fashion. To initialize and access arrays using
names for look-up and retrieval you can use code similar to the following example.

array a = ['FirstValue’ => 1, 'SecondValue’ => 2]; // Declare 'a’ with two elements

/I 'FirstValue’ maps to the value 1
Console.printin(a['FirstValue’]); // print out '1’ to the console
a['Thirdvalue’l = 3; // Set 'ThirdValue’ to map to the value 3

When you create the array using the above notations, it is important to notertteat will copy the
value and add it to the array. It will not reference the variable you pass to it. The following correct code
should demostrate this fact.

void V;

aray a =1[vV]
a[0] = 10;

v = "ten";

It is possible to mix the different types of values you can store in an array, however, once a value has
been set for a spcific index, it must remain that type. For instance the followingaiéd code because
the value at 0 is already a number.

aray a =1[2]
a[0] = "two";

2.4.4. object

Variables of type object either point to an object or they poimtuth. Null allows you to see if an object
variable points to something. All object variables, when declared, are initialized to null. To check if an
object variable points to null; it is only necessary to check for equality to null. Pointing to an object is
done in two ways: the new operator, which creates a new instance of a class, or by assigning it the value
that another object points to. Although this is covered later, it is important to note that two different
objectvariables can point to the same object and that an object variable can point to any type of
allocated object.

object o0 = null ;
object 02 = new SomeObject();
02 = new SomeOtherObjectType();

2.4.5. void

The void type iderite 's semi-polymorphic type; only semi-polymorphic because once it has morphed
into a specific type it remains that type. What this means in simpler terms is that the void variable can be
seen as a place holder type. Assigning a value to a variable of type void will cause it to change to that
type; for instance, declaring a variable of type void and assigning a numerical value to it will cause it to

Chapter 2. Language Reference

become a number. This allows you to write dynamic code that does not depend on a specific type. It is
important to note that a variable declared at the beginning of a function will remain a type for the
duration that function is running and will be reset when it is next called. If it is an object’s instance
variable, it will remain that type for that object for the duration of the object’s life time.

Itis important to note that the only thing that can not be assigned to a variable of type void is a function.
You can assign nhamespaces and classes to variables of type void and then use them as normal. The
ability to assign namespaces and classes is very useful when writing abstraction layers as it allows you to
use different concrete implementations and pass those references into functions.

void v = null ;»v is now an object pointing to null

void Vv2 = 42; » v2 is now a number with the value 42
void Vv3 SomeNamespace; » v3 points to SomeNamespace
void Vv4 SomeClass; » v4 points to SomeClass

Questionis there any performance penalty for using void? In other words, could a lazy programmer just
declare all variables as void and let the type system make all of the decisions, and not pay a price ther
than maintainability?

AnswerThere is no performance penality in using void and a lazy programmer can degtaréf
wanted. It is strongly recommended that this practice not followed because you drop one of the core
features, declared types, of ferite which are there to make maintenance and debugging less of a headache.

2.5. Variables

Variables are containers for values; the sort of value a variable stores is dependent on its type. Variables
come in a number of similar but distinct varieties: local variable within a function, a parameter into a
function, class, object and namespace variables. Before it is possible to store, or pass information around,
it is necessary to declare your variables.

modifiers type name [= expression] [, hame [= expression], ...]

- modifiers

There are a number of modifiers that can be applied to variables. This affects how they are treated
within ferite and allow you, the programmer, to specify what restrictions you wish to put on them.
Depending on the context of the variable declaration you can use zero of more of the keywords:

. final - the value of the variable, once set, can not be changed.

. atomic - all accesses on the variable (getting the value and setting the value) are atomic, i.e. thread
safe, which means that it is unnecessary to create an explicit lock for it. It is important to note that
this does have an execution time, and space, overhead to the variable and should therefore be used
wisely.

Chapter 2. Language Reference

There are a few more that will be discussed in the section about classes and namespaces (they are
public, private, protected, abstract andstatic).

. type

This is the type of variable that you wish to declare. It can be void, number, string, array or object.

« nhame

The name of the variable to be declared. The name must start with an alpha character (a-z, A-Z) or
underscore (_) and after that may contain underscores, digits ([0-9]) and other alpha characters.

« [= expression]

Variables can be initialized to a custom default value. If the expression is omitted the default value will
be '0’ for numbers, an empty string for strings, an empty array for arrays and null for objects.

Please Note!

When a variable is declared within a function you can specify any valid expression to be used as the
variable’s initializer (assuming the types are correct). E.g. a return from a function, the addition of two
previously declared variables.

However, when the variable is declared within a global, class or namespace block, it is only possible to
use a constant e.g. initialize a number with an integer or real number (e.g. 120 or 1.20 respectively), a
string with a double (without expressions) or single quoted string.Hofgpossible to initialize an

array or object in a global, class, or namespace block; these will have to be done using some form of
initializer function.

Rather than having to declare modifiers and type again for a set of variables it is possible to simply add
more names and initializers in a comma separated list. The modifiers apply to all of the variables
declared within the list which should reduce ambiguity when debugging.

number mynumber = 10, another_number;
final string str = "Hello World";

object newObj = null

array myarray = [1, 2, 3];

Chapter 2. Language Reference

A variable’s scope is as local as the function in which it is declared. The exception being global variables
which can be accessed from any function. Global variables can be accessed anywhere within a script and
are declared using the following syntax:

global {
...variable declarations...

}

Unless explicitly defined a variable is considered local. There are a number of predefined global
variables within derite script, these arargv, null anderr. argv is an array of strings containing the
parameters passed into the top level script that first gets exeouwtds used to allow checking of
object variableserr is the error object used for exception handling.

2.6. Expressions

Almost everything written irferite is an expression as they are the building blocks of a program. They
are combined to build other expressions which are in turned used in others using operators. Expressions
are built up using various operators, variables and other expressions, e.g. adding of numbers, or creating
an instance of a new object. Expressions are made clearer when discussing operators as these are what
are used to build them.

2.6.1. Truth Values

The crux of program flow are true and false. It is important to know what constitutes a truth value.

« A number that is not zero is considered as true, this also means that negative values are also true. It has
to be noted that if a number has switched into real format it is never likely to be considered false.
Currentlyferite deals with this by binding false to the range0.00001.

0 » false
1 » true
0.0 » false
0.2 » true

« A string that has zero characters is considered false, otherwise it is true.

» false
"Any Value" » true

- An array with no elements is false, otherwise is considered true.

[» false
[1, 2, 3] » true

« An object is considered to be false if it does not reference any instantiated object.

10

Chapter 2. Language Reference

null » false
(new Object()) » true

- Avoid variable can not be true and therefore will always be false. For a variable of type void to
become true, it must be instantiated to a truth value of another type. This side-effect of void variables
is useful because it allows you to, knowing that it is void, use a simple if statement to see whether the
variable has been initialized or not.

void v » false

There are currently two keywords that can be used 'true’ and 'false’ these are of type number. For
passing explicit truth values around these are the considered the correct way.

number shouldKeepDoingThings = true;

2.7. Operators

An operator applies a operation to one or more valfgege provides a set of operators that allow you

to do basic arithmetic, assignment, comparison and a whole load more operations. This section is broken
down into a set of groups; each containing like-wise operators. Before we delve into what operators
exist, it is important to consider some terminology. A unary operator is one that operates on only one
value and usually prefixes the value that it is applied to. A binary operator operates on two values; these
two values are called tHeft hand side andright hand side

2.7.1. Arithmetic Operators

» The addition operator '+’ allows you to add two variables together. Addition requires that the left hand
side of the operator should be eithemanber or astring . If the left hand side is a number, the right
hand side can only be a number; otherwise an exception will be thrown. If the left hand side is a string,
the right hand side can be of any typerite will inspect the right hand side and produce a string
representation of that value. If the value is an objieette will invoke thetoString() method
and use its return value as the right hand side.

1+2»3
"How many times? " + 10 » "How many times? 10"

» The subtraction operator -’ is mainly used with numbers. Although if the left hand side is a string, the
right hand side must also be a string, every occurrence of the string on the right hand side, in the left
hand side will be removed.

2-1 »1
"How many times? " - "How
"ABCBD"-"B" »"ACD"

» "many times? "

11

Chapter 2. Language Reference

» Multiplication ™" only applies to number types. The result is the left hand side multiplied by the right
hand side.

2*2 » 4

 Division /" also only applies to number types. The result is the left hand side divided by the right hand
side. If both sides of the operation are integer based numbers, the division will be integer otherwise it
will be floating point division.

2/2 »1
2/05 » 4

* Modulus '%’ - Returns the remainder of integer division between two number variables. If the
numbers are in real format they will be implicitly cast into integers and then the operation will be done.

2% 2» 0
11 % 10 » 1

2.7.2. Bitwise Operators

Please note that a if a real number is passed to a bitwise operator, it will be implicitly cast to a integer
number and then the operation applied. The examples within this section show the resulting number in
binary format, however, iferite , printing the value out to the console will display the result in

decimal format.

10 & 111 » 10 & 11

- Bitwise AND '&’ - does a bitwise AND on the two values passed to it. The result of the operation is
the left hand side value bitwise 'and’ed with the right hand side. In basic terms, this means that for
every bit in the right hand side that has a value of 1, the corresponding bit in the left hand side will be
noted, otherwise 0 will be used.

0b1010 & 0b1000 » 0b1000
O0b1111 & Ob0OOOO » Ob0OO0OO

- Bitwise OR '|' - does a bitwise OR on the two values passed to it. The result of the operation is the left
hand side bitwise 'or'ed with the right hand side. In basic terms, this means that for corresponding bits
on each side, if either bitis 1, 1 is used otherwise 0.

0b1010 | Ob1000 » 0Obl1010
Ob1111 | ObO0OOO » Ob1111

12

Chapter 2. Language Reference

« Bitwise XOR "V - does a bitwise XOR on the two values passed to it. The result of the operation is the
left hand value bitwise 'xor’ed with the right hand side. In basic terms, this means that for
corresponding bits on each side, if either bit is 1, 1 is used otherwise if both bits equal 0 or 1, then 0 is
used.

0b1010 ~ Ob1000 » 0Ob0010
Ob1111 ~ 0bO0O0OO » Ob1111

- Left Shift '<<’ - does a bitwise left shift on the left hand value by the right hand value number of bits.
For each bit shift, it is equivalent to multiplying the left hand value by 2. All new bits resulting in the
shift will be set to 0.

0b0010 << 2 » 0b1000
0b1111 << 2 » 0b1100

- Right Shift '>>" - does a bitwise right shift on the left hand value by the right hand value number of
bits. For each bit shift, it is equivalent to dividing the left hand value by 2. All new bits resulting in the
shift will be set to 0.

0b0010 >> 2 » 0b0O0O00
O0b1111 >> 2 » 0b0011

2.7.3. Incremental and Decremental Operators

Incremental operators allow in-line incrementing and decrementing of numerical values and should be
applied to variables of type number. There are two flavors of both incrementing and decrementing: pre
and post operators. When using the prefix operator, the variable’s value is incremented and the
expression evaluates to the new value. The postfix operator differs slightly because it will evaluate to the
variable’s current value and increment it afterwards.

* Prefix Increment '++’

number var = 10; » variable 'var' of value 10
10 + (++var) » 21, var is incremented to 11 and the value is added to 10

» Postfix Increment '++’

number var = 10; » variable 'var of value 10
10 + (var++) » 20, var is added to 10, resulting in 20, but var now has the value 11

* Prefix Decrement '--’

number var = 10; » variable 'var of value 10
10 + (--var) » 19, var is decremented to 9 and the value is added to 10

» Postfix Decrement ’--'

13

Chapter 2. Language Reference

number var = 10; » variable 'var’ of value 10
10 + (var--) » 20, var is added to 10, resulting in 20, but var now has the value 9

The examples hopefully demonstrate the subtle differences of the operators and their variants. These
operators are often used within looping.

2.7.4. Assignment Operators

The basic assignment operator is '=". The operator will take the value of the expression on the right hand
side and place that value in the variable on the left hand side.

number a = 10; » the variable a contains the numerical value 10
string b = "Hello World"; » the variable b contains the string value "Hello World"

It is useful to note that an obvject variable can point to any object. This means that an object variable
could point to an object of type Foo, and then point to an object of type Bar.

class Foo { number idx; }
class Bar { number idx; }

object f = new Foo();
f = new Bar();

There are a number of short hands using assignment: they couple one operator with assignment. For
instance, in the example below, to add-assign you could use the first expression, however you could use
the second shorter and less clunky version.

number a = 10; » a is initialized to 10
a = a + 100; » a now contains 110
a += 100; » a now contains 210

You can use the short hand of an operator with any of the arithmetic or bitwise operators, just prefix the
assignment operator with the operator you wish to use. For instance:

b -= "many" » remove "many" from the string b

¢ *= 10 » multiple ¢ by 10

a += 12; » ’'a’ now is equal to a+12

b += " From Ferite"; » 'b’ now is equal to b+" From Ferite"

A variable of type void can be morphed into a specific type through assignment. In the example below
the variable ¢ is morphed into a number, and variable d morphed into a string. These variables can not be
changed into a different type once morphed.

void ¢ = 42; » c has been morphed into a number
void d = "Now A String"; » d has been morphed into a string

14

Chapter 2. Language Reference

2.7.5. Comparison Operators

Comparison operators allow the differences between two values to be chietked. provides a

standard set of comparison operators that should be found in all programming languages. It is important
to note thaterite will not throw an exception if different types are used (such as a string and a

number) within a comparison, instead the result will be set to false. Comparison operators are used for
conditional statements and loops (discussed later).

» Equal To '==" - true if both sides are equal, false otherwise.

10 == 11 » false, 10 does not equal 11
4 == (2 + 2) » true, 4 does equal 2 + 2

» Not Equal To =" - true if both sides are not equal, false otherwise

10 '= 11 » true, 10 does not equal 11
4 1= (2 +2) » false, 4 does equal 2 + 2

* Less Than '<' - true if the left hand side is less than the right, false otherwise.

10 < 11 » true, 10 is less then 11
4 < (2 + 2) » false, 4 is equal to 2 + 2

» Less Than Or Equal To '<=" - true if the left is less than or equal to the right hand side, false otherwise.

10 <= 11 » true, 10 is less then 11
4 <= (2 +2) » true, 4 is equal to 2 + 2

» Greater Than ">’ - true if the left hand side is greater than the right, false otherwise.

10 > 11 » false, 10 is less then 11
4 > (2 +2) » false, 4 is equal to 2 + 2

» Greater Than Or Equal To '>=’ - true if the left is greater than or equal to the right hand side, false
otherwise.

10 >= 11 » false, 10 is less then 11
4 >= (2 +2) » true, 4 is equal to 2 + 2

* isa'isa’ - true if the left hand side expression is of type stated on the right hand side.

"Hello World" isa string » true
42 isa string » false, 42 is a number

« instanceOf 'instanceof’ - true if the left hand side expression is an instance of the class stated on the
right hand side.

Console.stdin instanceof Sys.StdioStream » true
Console.stdin instanceof Test » false

15

Chapter 2. Language Reference

2.7.6. Logical Operators

These operators are useful for connecting comparison operators to build bigger expressions.

« Not'!' - true if the expression it is applied to is false.

(4 > (2+2)) » true, (4 > (2+2)) evaluates to false, the ! operator flips this to true.
(10 > 4) » false, (10 > 4) evaluates to true, the ! operator flips this to false.

You can also use the keyworbt to represent the operator. This is preserfeite because
sometimes the '!’ can get lost in the expression. 'not’ is the same as '!'.

not (4 > (2+2)) » true
not (10 > 4) » false

« And’'&&’ - true if both variables/expressions are true.

true && (4 > (2+2)) » false, (4 > (2+2)) is false, therefore true && false » false
true && (10 > 4) » true, (10 > 4) is true, therefore true && true » true

It is also possible to use the keywaxdd to represent this operator.

true and (4 > (2+2)) » false
true and (10 > 4) » true

« Or’||' - true if either variable/expression is true.

true || (4 > (2+2)) » true, (4 > (2+2)) is false, therefore true || false » true
true || (10 > 4) » true, (10 > 4) is true, therefore true || true » true

It is also possible to use the keyward to represent this operator.

true or (4 > (2+2)) » true
true or (10 > 4) » true

It is important to note that to make sure the operators are evaluated in the expected order it is often
necessary to use brackets. The example below demonstrates how an extra set of brackets changes the
order of evaluation.

not (4 >2) and (4 > 4) » false
not (4 > 2) and (4 > 4)) » true

16

Chapter 2. Language Reference

2.7.7. Index Operator

The index operator provides a mechanism for pulling information out of an array or a string. There are a
number of variations of the operator that are explained below.

« '[I' - This works on only the array type. When used in this form, the operator adds a new void variable
onto the end of the array and then provides it ready for use. The main aim of this variant of the index
operator is to provide an easy way of placing new values onto the end of an array.

array a,
af] = 1;
afl = 2
a[] = 3; » a being an array with three elements: [1, 2, 3]

For the record the above example can be re-written as shown in the example below. This does not
make the above example invalid, we just ask you to imagine lots of code between each line.

aray a=1[1, 2, 3]

+ [expressioh- this variant is the main way you can pull either a value or character out of an array or
string respectively. When used with an array, if the expression evaluates to a number, the operator will
evaluate the value at that index. If the expression is of any other type, the value will be used to create a
hash index to get the array value. If the operator is applied to a string, only a numerical expression can
be used; the operator will evaluate to the character at that index.
aray a = [1, 2, 'Hello World" => 3];

a[0] » the first value within the array, in this example '1’
a['Hello World"] » the value pointed to by "Hello World", in this example '3
a[2] » the third value (created using the 4th line of the example)

It is important to note that counting for an index starts at O (for historical reasons), therefore a value in
position 10 will have an index 9.

- [lower bound expressiompper bound expressipfalso referred to as the slice operator) - This is a
range expression. With strings and arrays it allows you to take a slice of the variable; in the case of an
array, the operator will evaluate to a new array containing the values described within the range, in the
case of a string, a new string with the described range will be evaluated to.

The range can be ascending - in which case the order in the variable is preserved, or descending in
which case, the slice is made with the contents being reversed. It is possible to leave out the upper or
lower bound expression dictating that the operator should go to the end or from the beginning
respectively. If a negative number is givésrjte interprets the expression to imply an offset from

the end of the variable’s range.

string s = "Hello";

string t = s[-1..0]; » a slice of the entire string and reverse it
string U = s[..2]; » a slice of the first 3 characters in the string s
aray a =1[1, 2, 31

array b = a[l.]; » a slice of a containing [2, 3]

17

Chapter 2. Language Reference

2.7.8. Complex Operators

These are not complicated operators. They are actually very friendly and nice operators. In-fact they are
quite simple. Just slightly more complicated than the previous operators.

* Instantiate an object 'new’ - this operator takes a class name and a set of values and will create a new
object based upon that class. It will call the constructor of that class and then return the object.

new SomeClass(10) » a new object from SomeClass

It should be noted that multiplebjectvariables can point to the same object created using the new
keyword. This is discussed later on witiitasses and Objects

object newObject = new SomeClass("aString”, 10);
object anoObject = newObject; » both variables point to the same object

« Evaluate a string ’eval’ - The eval operator allows you to on the fly compile and execute aasetipt
get a return value. They say a picture is worth a thousand words, so here is an example of eval. If the
string supplied to the operator is invalid, an exception will be thrown.

eval ("Console.printin(\"Hello World\");");

The above example is the same as running the following script:

Console.printin("Hello World");

To return a value, you just use the return keyword (mentioned within the function documentation in
the next section). The code below will return '42’, which will in turn be assigned to the vaniahle.

number value = eval("return 42;");

This is of course a very simple example and does not show what a useful operator it is, but it does
allow you to, at runtime, modify the behavior of code. It should also be noted that there are potential
security risks involved with this operator and it should be considered carefully; it is advised that you
never eval a string that is from an unknown source.

Later on in this manual, the operaioclude is discussed. This operator is similar to eval except it will
evaluate a file.

18

Chapter 2. Language Reference

2.8. Statements and Blocks

Statements are basically a collection of expressions followed by a’;’.

A block is a set of statements sat between two braces '{}. It is possible to declare new variables but they
must be declared at the beginning of a block.

{
number X = 10;
X =X + 2;
X++:

}

Sometimes it is useful to isolate variables to a specific block in a large chunk of code. To make writing
code easieferite allows you to nest blocks allowing you to, if required, reduce the number of variable
declarations at the beginning of functions and/or re-use variable names. The example below shows this in

action.
{
number x = 10;
{
string str = "Some Value";
}

Even though it is possible to re-use variable names within blocks it is not recommended as it can
introduce ambiguity. Howeveferite will correctly use the most locally declared variable.

{
number x = 10; // 1st x
X = 20; /I 1st x
{
number x = 20; // 2nd x
x = 30; /I 2nd x
}
X = 40; /Il 1st x
}

2.9. Control Structures

ferite contains methods for changing the program flow, these are formally called control structures.
The control structures can be nested as deeply as you need, however, we strongly urge you to not nest
them too deeply as it can cause confusion and ambiguity.

19

Chapter 2. Language Reference

2.9.1. If, Then and Else

This allows for the conditional execution fafrite scripts based upon the result of a test in the form of
an expression. There are two types you can employ: one that will execute code if test is true, the other
will do the same as the first but also execute a different bit of code if the test is false.

if (expression) {
statements if the expression is true

}

if (expression) {

statements if the expression is true
} else {

statements if the expression is false

}

It is not necessary to place braces around the statement block if it is only one statement.

if (a<10)
a=a+ 2

The truth value of the expression is determined when the control structure is executed based upon the
definition of the truth values ifiruth Values

if (a<b)
Console.printin("A is less than B");

if (b>c){

Console.printin("B is greater than C");
Console.printin("This could be fun.");
} else {

Console.printin("It's all good.");

}

There is the age old problem of tdangling elsgroblem. Withferite the else binds to the closest if
statement within the same block. For instance:

if (foo) if (bar) Console.printin("one"); else Console.printin("two");

Is equivalent to:

if (foo) {
if (bar) {
Console.printin("one");
} else {
Console.printin("two");

}

20

Chapter 2. Language Reference

2.9.2. Looping

You can not do very much without the ability to loop over data. Each time the block of a loop is executed
it is called an iteration. There are several forms of iterating over dédtaiie@ : while, for and
do..whileloop.

2.9.2.1. while Loop

The first type of loogerite supports is the while loop; this allows you to keep looping until the
expression, used as the test, evaluates to false. Each time the loop executes, the test is evaluated and if it
is true, the body of the while will run.

while (expression) {
statements if the expression is true

}

while (expression)
single statement if the expression is true

The following code will keep looping until n is equal to 10. On each loop the code will print out the
current value of n from 0 to 9 on a new line and then increment the value of n by 1.

number n = O;

while (n < 10) {
Console.printin("$n");
n++;

}

2.9.2.2. for Loop

All of ferite ’s looping constructs can be modeled using the while loop, however, it is often useful to
use the for loop.

for (initiator ; test ; post-block) {
statements if the expression is true

}

for (initiator ; test ; post-block)

single statement if the expression is true

The initiator expression is executed unconditionally at the beginning of the loop. This is useful, as an
example, for setting the initial value of a loop variable. The test is used in the same fashion as a while
loop; if it evaluates to true the looping continues, if it evaluates to false the loop will terminate. The main
difference to the while loop is the ability to execute a statement at the end of each iteration - often used to
increment a variable.

21

Chapter 2. Language Reference

If the test is empty it will automatically evaluate to true, causing the loop to continueBratikis used.

number i = 0;
for (i=0;i< 10; i++)
Console.printin("variable i currently equals " + i); // print out the value of i

It is possible to declare a loop variable within the first section of a for loop declaration. This allows you
to use loop only variables, knowing that there will be no impact on the surrounding code. This is
commonly done when using for loops. The above example, re-written to take advantage of the feature
looks like this:

for (number i = 0; i < 10; i++)
Console.printin("variable i currently equals " + i); // print out the value of i

2.9.2.3. do .. while Loop

Thedo .. whileloop is a variation of thevhile loop, the one difference being that it guarantees at least
one execution of its body. It will only then complete looping until the expression evaluates to false.

do {

statements if the expression is true
} while (expression)

do

single statement if the expression is true
while (expression)

2.9.3. Manipulating Loops

2.9.3.1. Break

breakwill end the currentor, while, do .. while, or switchoop it is executed in. It allows you to easily
escape the current loop if you wish to.

2.9.3.2. Continue

continue will cause execution flow to jump to the end of the block of the cufognthile, do .. while, or
switchloop it is executed in. continure is useful to move onto the next iteration before the current one has
finished.

22

Chapter 2. Language Reference

2.9.4. Exception Handling

This control structure provides the exception handling withiite . There are three main components
to this structure: the code to execute that may throw an exception, the code to execute if an exception is
thrown and an optional block to execute if an exceptiomdsthrown.

iferr {

statements

} ofix |

statements to clean up in case of an exception
} else {

statements if no exception has occurred

}

It is possible to nesferr-fix-else blocks. When an exception does occur a global variable called err is
instantiated and given information relating to the thrown exception. The object has two attributes, a
string 'str’ and number 'num’ - these provide information on the error that occurred. Exceptions are
propagated up through the system until a handler is found; if no iferr-fix-else block catches the
exceptionferite will cease execution of the script.

2.9.5. Switch

This allows you to write blocks of code that are only executed when an expression evaluates to a certain
value. This is roughly equivalent to doing a number of succeskhiecks, but it is cleaner, tidier and
easier to understand.

switch (expression) {
case expression:
. code ...
. more case blocks ...
default:
. code ...

When the switch statement is executed, the expression at the top is evaluated and its value stored for
comparison. Acaseexpression is evaluated to see if it equals the value previously stored for comparison.
If it does, the cases block is executed until the end of the switch statement (including other case blocks).
To restrict the flow of execution to that of the matching case blockbtaak is used. 'break’ will cause

the execution to jump to the end of the switch statement. If yowcas&nue, the first expression will be
re-evaluated, effectively causing the switch statement to start again.

It is possible to define a catch-all case block usingdifault identifier. If no case blocks match the
switch expression, this case block will be executed.

switch (input) {
case O:

23

Chapter 2. Language Reference

Console.printin("case 0");
case 1:
Console.println("case 1");
break;
case 2:
input++;
Console.printin("case 2");
continue;
case "3"
Console.printin("case 3");
break;
default
Console.printin("default");

When the variable input is equal to 0, the following will be printed out to the console. The first two case
blocks are executed because there ibreak at the end of the first case block.

case 0
case 1

When input = 1, the following will be output-ed to the console. The break at the end of the second case
block causes execution of the switch statement to finish.

case 1

When input = 2, the following will be output-ed to the console. The third case block increments the value
of input and causes the execution of the switch statement to be restarted. The value of input increases to
the numerical value of 3; as there is no case block that can catch that vahlefalét case block is

executed. At first it may seem that the fourth case block may be used, but its expression is the string
representation of 3.

case 2
default
When input = "3", the following will be output-ed to the console. Once again, the break causes the

switch statement to finish.

case 3

When input is anything else:

default

It is very important to note that you can use any valid expression as the case expression. It can even have
different types than the first switch expression (there won'’t be any exceptions thrown). This makes switch
a very powerful construct. You do not need to supplgefault block if you do not wish to have one.

24

Chapter 2. Language Reference

2.10. Functions

Blocks of statements have been discussed before and functions are just a block of code with a name
attached to it. Using this name you can re-use the block of code, creating a library of functions to solve
common tasks.

A function consists of a name, a parameter list declaration and a block of code - but before delving into
the creating of functions, it is important to look at how to call a function.

X = add_numbers(1, 2);

To call a function, you use its name and pass it a set of values. The above example shows a function call
to a function nameddd_numbers it is passed two values: the numieand the numbe2. Any value

can be passed to a function and is often the result of evaluating an expréagion; will throw an

exception if the types mismatch those of the function being called. All functions may return a value and,
in the above example, it is assigned to some variable x. You can ignore the return value from a function
call if you so wish, ferite will automatically handle the return and discard it as needed.

As mentioned before, a function consists of a name, a parameter list and a block of code. It looks like the
example below.

function function_name (parameter declarations X
block of code

}

« function_name This is the name of the function and must obey the same rules for naming as the rules
for namingVariables It is recommended that the name should reflect the purpose of the function, e.g.
open, close, add; rather than how the function works.

» parameter declarationsThis is a comma separated list of variables. For each variable it is only
necessary to supply the type of a variable and its name. Sometimes it is necessary to pass a variable by
referenceferite allows this to happen by allowing the name of the variable to be prefixed with a
'&’. Passing variables by reference is covered latePass By Reference

» block of code To what a block consists of you should see the se@imtements and Blocks
/*

This function will add the string "foo" onto the end of the string it has been
given and then return it.

*/

function foo(string bar) {
bar += "foo",
return bar;

}

It is important to note theterite falls into the category of call-by-value languages. This means that
when a function is callederite takes each value passed to the function, copies it and assigns it to the

25

Chapter 2. Language Reference

variable for that parameter. This means that variables passed into a function call will not be modified by
that function call and will remain the same afterwards. This is the same for all types, including arrays,
strings and objects. There is a slight oddity with objects: whereas with strings and arrays, you get a
complete copy of the original value, with an object variable you get a copy of the reference to the object
it points to. Therefore making a function call, or changing a variable, on an object reference (even though
it is copied) will change that object and that change will be seen after the function call; this is because
the reference to the object andt the object itself that has been copied.

The following example demonstrates this effect with arrays and objects. (It is assumed that StringObject
used within the example holds a string that can be set sst$fring() and obtained by calling

stringValue() and using the return value. For more information about classes and objects please read the
sectionClasses and Objects

function test(array a, object b) {
af] = "Add Iltem On The End"; // Add an item to the end of the array
b.setString("Set A String In Test");

}

amay a =1[1, 2,3, 4]

object b = new StringObject("Hello World");
Console.printin("Before call to test: ${a}, ${b.stringValue()}");
test(a);

Console.printin("After call to test: ${a}, ${b.stringValue()}");

The output of the above program is shown below. Note how the array has remained the same but the
object has been changed.

Before call to test: [1, 2, 3, 4], Hello World
After call to test: [1, 2, 3, 4], Set A String In Test

Functions provide an easy way of grouping statements together to perform a task and are the corner stone
of any nutritiousferite script.

2.10.1. Variable Argument Functions

Sometimes it is hard to know how many values you wish to pass into a function; to aitkyt@u,

provides an easy mechanism to write functions that depend on an unknown set of values. When executed
it is possible for the function to get a list of the arguments by invokingatigements() command. This

returns an array containing the values passed into the function, with the last value being the name of the
function being called.

Althougharguments()is often used in a variable argument setting, it is possible to use it within any
function.

26

Chapter 2. Language Reference

Declaring a function with variable arguments is the same as declaring a normal function, except the last
item in a parameter list is.. This tellsferite that the function can accept more values including and
beyond that point within the parameter list. The following program listing shows how to declare and use
variable argument functions.

uses "array", "console";

function test(string fmt, ...){
number i = O;
array fncArgs = arguments()

Console.printin("test() called with ${ Array.size(fncArgs) } args");
Console.printin(fmt);

for (i = 0; i < Array.size(fncArgs); i++){
Console.printin("Arg[$i]: ${ fncArgs[i] }");
}

}

test("nice");
test("nice", "two", "pretty");

This is an important concept as it is used elsewheferite to provide a clean method of dynamic
programming when used witbynamic Objects

2.10.2. Returning A Value

If there is not an explicit return statement then the function will return nothing in the form of a void
variable. To return a value from a function, it is as simple as usingettuen keyword.return takes an
expression and returns the result of its evaluation to the caller of the function. Just as values are passed in
by copying them to the parameter variables, the return value from a function is also copied to the

function calling it.

return someValue * 10;
return 0O;
return "Hello World";

The default return from a function is a void variable. The two functions below will return exactly the
same value to the callgerite has a default return value to remove the necessity of requiring the
programmer to always supply one.

function foo() {
void X;
return = X;

}

function bar() {

}

27

Chapter 2. Language Reference

2.10.3. Function Overloading

There are times when you wish to have the same operation applied to different data types, for example, a
print method where you wish to handle various different types and/or number of argufegtats.

provides a function overloading mechanism which allows you to write a set of functions all with the

same name but with different parameters. When the program feriten ~ will automatically choose

the best function for the job based upon the types being passed into the function.

uses "console";

function print(number n ¥
Console.printin("Number: $n");

}

function print(string s)
Console.printin("String: $s");
}

print(10);
print("Hello World");

The above code declares two functions with the narme . If the script is run the following output
would occur.

Number: 10
String: Hello World

2.10.4. One Line Functions

Some functions return the result of a single expression, or call a different function. Using braces is
somewhat over kill and can cause clutter within the céelite allows you to use one line functions;
these are best explained through the use of an example.

uses "console";

function printNumber(number n)
Console.printin(“"Number: $n");

function printString(string s)
Console.printin("String: $s");

printNumber(10);
printString("Hello World");

28

Chapter 2. Language Reference

2.10.5. Pass By Reference

Earlier in this section on functions, it was mentioned fedte = passes parameters in by value. This is
fine for small strings and arrays, but there are times when you do not want the overhead of copying a
large array or large string from one function to another. Or you would like a function to return more than
one value. To make life easitarite allows you to pass a variable in by reference; this means that
when you change the value of a parameter, the value of the variable in the calling function is modified -
there is no copying.

This feature is enabled through the use of a '&’ before the name of the parameter. The following

example should help demonstrate what happens and how it differs from the normal behé&uviar of.

In the example, the function test has two parameters: a number 'b’ which is marked as pass-by-reference
and a string str which will maintain normal behavior.

uses "console";

function test(number &b, string str)}
b =2
str += "From Foo0",

}

number a = 1;
string str = "bar";

Console.printin("This should be 1: $a, should be ’bar: $str");
test(a, str);
Console.printin("This should be 2: $a, should be 'bar: $str");

The result of running the program, is the number 'a’ passed into 'test’ is passed by reference which

means that rather than the value being passed the variable is passed into test. When test changes the value
of the parameter to be '2’, the variable 'a’ is changed. Even though test changes the value of the string
parameter, it is only changing the value of the copy. The output of this code running is shown below.

This should be 1: 1, should be ’bar: bar
This should be 2: 2, should be 'bar: bar

This can be a very useful tool for speeding up programs or returning multiple values; it is recommended
that it is used sparingly because it can potentially cause confusion.

2.11. Classes and Objects

Object oriented programming (OOP) is a proven methodology for implementing large complicated
systems. The core idea behind object orientation is the grouping of likewise data and methods into
special containers called objects. Each object provides a specific purpose, for instance: you could have an
'Employee’ object that stores data about an employee, such as name, age and salary and has a set of

29

Chapter 2. Language Reference

functions that do things with the data within the object, such as increasing the salary or incrementing the
age of the employee. OOP allows you to think of a programs structure as you do the real world and
therefore plays a critical role withierite

Objects withinferite have already been mentioned before, however, this section covers them in great
depth: such as creating classes (the templates that objects are created from), instantiating objects and
how to usderite to implement a clean object base architecture. Before we can talk about objects, we
must discuss classes. A class is a description of a structure; it describes how an object is put together:
what information it can hold and what functions can be called on that data. Every single object within
ferite is an instance of a class; the following code shows what a class looks like.

class ExampleClass {
string stringValue;

function constructor (string str){
self .stringValue = str;
}
function printString(){
Console.printin(self .stringValue);
}
}

The above code snippet declares a class c@lleinpleClass The class declares the variable

stringValue and two functions, a constructoonstructor and normal functiomrintString . When an

object is created from a class definition it said to have been 'instantiated’ from that class; we say that the
object is an instance. It is possible, and often the case, that each class will have more than one instance
within a program. When an object is instantiattetife ~ takes the description provided by the class,
creates the variables within that object and then calls the constructor. constructors are covératis

a constructor?

To create an instance of a class tiev keyword is used; it takes the name of the class, the values to be
passed onto the class’s constructor and will return an object. The code below shows how to create a new
object and then call the functigrintString on it.

object someObj = new ExampleClass("Hello World");
someObj.printString(); /I will output Hello World

What good is an object if you can not do anything with it? To access the variables, or call a function, in
an object requires two things to be known: what you want to access/call and which object to use. Using
the above example, we call the functiprintString() on the objecsomeObj the trick is with the ., it
tellsferite to apply the function call on the right hand side to the object on the left hand side.

To reference variables and functions from within an object’s function, it is necessary to prefix the
variable withself. or simply a.. Just as in the above example, we ssmeObjon the outside of the
object, on the inside - the class description - we aeéto refer to the object we are in. This can be seen

30

Chapter 2. Language Reference

in use in the definition of the clagxampleClass in the functionprintString we use theself variable to
access the string contained in the object.

Lots of objects can cause a lot of headaches, especially when you have to make sure to clean them up
when finishedferite comes to the rescue with a garbage collector; a behind the scenes helper that
deletes objects from memory when they are no longer in use. An object is considered in use when there
is at least one variable of type object pointing to it. When the number of variables referencing an object
drops to 0, the object will be deleted because it is no longer reachable from the prégitem. 's

garbage collector is designed to deal with large and small programs and should have minimal
performance impact on the execution of a program. There are no guarantees as to when an object will be
deleted.

2.11.1. What is a constructor?

A constructor is a special function that is called, if it exists, when a object is instantiated from a class. It
provides a mechanism for setting up the default values for an object when it is created. Like normal
functions, a constructor may have a parameter list and obtains the value throungiwtkeyword. An
example constructor can be seen in the bodsxampleClass This constructor assigns the value of the
parameter to the string contained in the object. All constructors are catestructor.

2.11.2. Inheritance

One of the best pieces of advice when developing a program is to re-use code. Inheritance provides a
clean mechanism of re-using the functionality in your classes. As an example, let's say that a program
needs to deal with vehicle information. You want to store information about different vehicles and for
simplicity we shall say that there are three types: motor bikes, cars and trains. There is a common set of
details that can be stored about them: the size of engine, make, model, top speed, number of wheels. We
have to create a new class, for each vehicle type, that deals with all the pieces of information; this can
introduce bugs, inconsistencies and make life complicated. Inheritance to the rescue! To solve this
problem, we create a class that contains all the information that can be shared. We then create a set of
classes that inherit from our class; each new class contains the vehicle specific information. The example
below shows how to implement the solution wittiénite

class Vehicle {
string make;
string model;
number engineSize;
number topSpeed,;
number wheelCount;

}

class MotorBike extends Vehicle {
number handleBarType;

31

Chapter 2. Language Reference

class Car extends Vehicle {
number doorCount;

}

class Train extends Vehicle {
number carriageCount;

To extend a class, thextendskeyword is used; it tellerite to note that this class inherits the

variables and methods from the class named on the right of the keyword. In the example above, a class
Motor Bike inherits from the clas¥ehicle. When an an instance of Motor Bike has been created; it is
possible to set the value of each variable named in both Motor Bike and Vehicle. The code below
demonstrates how it is possible to use the variables.

object hbike = new MotorBike();

bike.handleBarType = 1, /I From ’'MotorBike’
bike.make = "Honda"; /I From ’'Vehicle’
bike.model = "Fireblade"; /I From 'Vehicle’

ferite only supports single inheritance; a class may inherit from a maximum of one other class. This
distinction is being made because some languages support multiple inheritance. If we have two classes,
A and B, and B inherits from A, we call A the 'super’ class, and B the 'sub’ class.

There are a few important points that should be noted about inheritance:

1.1tis possible to create a function in a subclass with the same name as a function in the super class.
This allows you to create custom functionality and change the way the super class’s implementation
may work.

class A {
function someFunction() {
Console.printin("someFunction in A");

}

class B extends A {
function someFunction() {
Console.printin("someFunction in B");

If an object of type A is created arsbmeFunctioncalled, the output will be:

someFunction in A

However, as we have changed swneFunctionin B, the output for an object from B will be:

someFunction in B

32

Chapter 2. Language Reference

2. When we inherit values or functions from a super class we sometimes want to access them as if we
are an object of that super clagsjte allows you to prefix items with the keywosliper. This is
similar toself except that the object is seen as an instance of its super class. E.g.
super.someFunction() will call the functionsomeFunction as if it was coming from an object
created from the parent class.

class B extends A {
function someFunction() {
super.someFunction(); /I Call the someFunction in A
Console.printin("someFunction in B");

The result in making the above additiondomeFunctionin B, will cause the following output, if
someFunctioncalled.

someFunction in A
someFunction in B

3. As mentioned before, it is possible fiarite to invoke a constructor on an object when it is
created. It is important that if the class the object is being instantiated from inherits from another
class, there is a call to the super class’s constructor - it is not done automatically. This can either be
done by doing super.NameOfconstructor() or super().

class B extends A {
function constructor 0 {
super(); /I Let the super class initialize the object

4. You do not need to re-implement each function within a class. If a function is called on an object,
and the subclass does not have an implementation feriitg ~ will go up the tree of inheritance
until it can find one.

class A {
function someFunction() {
Console.printin("someFunction in A");

}

class B extends A {

}

object 0 = new B();
o0.someFunction(); /I Will use the implementation in class A

The output to the above example will be:

someFunction in A

33

Chapter 2. Language Reference

5. You can inherit from a class as many times as you like and you can inherit from classes that inherit
from other classes.

class A {

}

class B extends A {

class C extends B {

class D extends B {

class E extends D {

6. It is possible to call the constructor of the parent class by using the special fusapien().

class A {
function constructor() {
Console.printin("A");

}

class B extends A {
function constructor() {
super(); // Call the constructor in A
Console.printin("B");

2.11.3. Static Members

Whenferite creates an object from a class, all the variables and functions are added to the object;
however, it is potentially useful to tie variables or functions to a class. An example of this need is
generating a unique id for each object that has been created: the current id is stored in the class and a
function to get the next id. To telérite that you want this behavior, it is necessary to usesthtc
modifier. Wherferite sees the keyword it notes that the function or variable it is used with must
remain within the class and not appear in any instances.

The code below shows how to solve the unique id problem mentioned above.

class SpecialClass {
/I The class only items

34

Chapter 2. Language Reference

static number currentlD;

static function getNextUniquelD() {
/I self refers to the class
self.currentID++;
return self.currentID;

}

/I The object only items
number mylD;

function constructor() {
/I self refers to the object that has been created
self.mylD = SpecialClass.getNextUniquelD();

There are a number of important things to note about the use of static items: the keyatargrefixes

the items to be made static; to reference a static member of a class you must first use the class name and
then the member you want - even if you are making the reference from within an object from that class.

If you do try and access a static member within an object throughfeét, will throw an exception.

There is another trick that can be used with classes: static constructors. These allow you to run
initialization code on a class onésite has finished compiling it. The code will run during
compilationnot execution. Static constructors are the same as normal constructors with a few
differences: there is no guaranteed order of execution (class A may be called before class B but it is not
guaranteed), they must have no parameters and they have the static keyword prefix. An example of how
to write a static constructor is below.

class A {
static function constructor() {
Console.printin("Boot Strapping Class A");

2.11.4. Access Control: Public, Protected, Private, Abstract
and Final

Programmers are notoriously good at creating bugs, it is, therefore, sometimes necessary to lay down
some rules on how classes and objects should be fisigel. has a set of access controls that allow

you, the programmer, to specify how functions and variables can be accessed from outside or inside an
object. Why would you want to add restrictions? Sometimes it is important to hide the mechanisms
within an object or class and add a well specified interface; if you change the way things work in the
background, impact on existing code should be minimal. The variables within an object are that object’s

35

Chapter 2. Language Reference

data and it should be up to the object to change the values, not an external entity fishing about. If some
other piece of code changed a variable without the object’s consent, all manner of mayhem could occur.

What restrictions can be specified? Public, Protected, Private, Abstract and Final.

1. public: a public variable or function that may be accessed from any part of a program; there are no
restrictions. By default everything is made public.

class A {
public number objectID;

2. private: when applied to a function or variable, it will only be accessible from that object or class.
private will hide the variable or function from any subclasses that may exist.

class A {
private string mutableBuffer;

3. protected: protected sits between private and public; a protected variable or function may only be
accessed from within an object it is part of, however, unlike private, a protected item can be accessed
from any subclass.

class A {
protected number databaseRefID;

4.final: Sometimes it is necessary to make sure that a variable can not be chiamgetbes a couple
of things. With a variablefinal tellsferite that, once a value has been assigned to it, the variable
must not be modified. This is a great way of setting up constants within a program. If a program
attempts to assign a new value to a final variable an exception will be thrown. When used with a
class, final will make sure that another class can not inherit from it. This is useful feature allowing
you, as the programmer, to dictate whether or not you want people changing the behavior of your
class.

class A {
static final number maxObjectCount = 1024;

5. abstract: this can only be applied to classes. An abstract class can not be instantiated; a programmer
may only inherit from an abstract class. This is useful when enforcing a factory-methods style of
programming. There is the top level abstract class which all concrete implementations inherit from;
functionality is driven using the abstract class. E.g. an abstract protocol class with concrete
implementations for HTTP, ftp and HTTPS.

abstract class Protocol {
function sendRequest(string req) { ... };
function receiveRequest() { ... };

36

Chapter 2. Language Reference

class HTTP extends Protocol {

}

2.11.5. Protocols

Protocols are your friend and solve the problem of multiple inheritance. What are they for? Sometimes it
is necessary to have an agreed upon protocol between a collection of objects. For example, if there is an
event engine that you wish to register an object with, it is important that two properties are true: the event
engine can quickly and easily check to see if the object responds to the function calls the event engine
expects, and that a programmer can easily craft an object that contains the correct functions.

Protocols allow, in our example, the event engine developer to define the interface that it expects all
registered objects to respond to. The definition contains a set of functions without implementation and,
using this protocol, developing a client to the event engine, programmers can specify that the class they
are developing should conform to the protocol. Wieite finishes compiling a class it first executes,

if it exists, the class’s static constructor and then checks to see if the class implements all the functions
described in the protocol list. If the class fails to conform to any of the protocols, compilation will halt
with a compile error.

protocol EventHandler {
function respondsToEvent(string event);
function handleEvent(string event, array data);

This is a protocol definition. It defines a protocol calleeentHandler with two functions. A class that
implements this protocol must have two functions with the same names and signatures as these two
functions. Protocols look very similar to classes in their structure.

class EventEngine {
function registerEventHandler(object eventh) {
if(eventh.getClass().conformsToProtocol(EventHandler)) {
/I register the event
return true;

}

return false;

This code shows how to test if an object conforms to a protocol gett€lass()function returns the class
that the object is instantiated fromonformsToProtocolis a function that all classes respond to; it takes
one parameter and that is the name of the protocol to check for. It returns true if the class supports the
protocol and false otherwise. If true, it is safe to call the functions described within the protocol.

37

Chapter 2. Language Reference

class KeystrokeEvent implements EventHandler {
function respondsToEvent(string event) {
return true;

}

function handleEvent(string event, array data) {

This class shows how to télrite that a class should conform to a protocol. The important part of the
above example is thenplements EventHandler, it tells ferite that the class should 'implement’ the
protocol 'EventHandler'. It is possible for a class to conform to more that one protocol at a time; instead
of a single protocol name, you use a comma separated list.

class Keystroke implements EventHandler, LogClient {

It is important to note that if you are using protocols, the extends clause must come before the
implements clause.

class SomeClass extends AnotherClass implements SomeProtocol {

2.11.6. Dynamic Objects

Sometimes you do not know what you will have to deal with at runtime as information and structure can
changeferite provides mechanisms to catch missing variables and functions within objects. The
mechanism makes building dynamic systems easier; for instance, a generic database table object does
not know what fields may exist. To keep usage consistent with the way values are obtained from an
object, the table object can implemexttribute_missing. Whenferite can not locate a variable within

an object, the runtime will call, if it exists, thatribute_missing function. It passes a string to the

function which contains the name of the required variable. In the case of the table object, the
attribute_missing function loads the value from the database and returns it.

class DatabaseTable {

function attribute_missing(string variable) {
void Vv = load_value_from_db("sometable", variable);
return v;

}

The mechanism for missing functionsngethod_missing Whenferite calls this function it provides
all the original parameters as well as the name of the function as the last parameter. To get the parameters

38

Chapter 2. Language Reference

it is possible to use th&ariable Argument Functionsiechanism. This functionality is used extensively
within ferite ’s rmi module.

class RemoteSystem {
function method_missing(...)

{
number i = O;
array args = arguments();
Console.printin("Function called: " + args[Array.size(args)-1]);
Console.printin("With arguments:\n");
for (i = 0; i < Array.size(args)-1; i++)
Console.printin("\tArgument ${(i+1)} = ™ +
args[i] +
" (${Reflection.type(args[i)})");
Console.printin("™);
}

The above code prints out the name of the function and then prints out each argument and the argument’s
type.

2.11.7. Modifying Existing Classes

ferite has a number of features that allow you to modify existing classes. Why is this useful? Well, say
you have a class that is used all over the place, let's=#ayand you wish to debug a method, or
re-implement a method to work around a bug, or even just add a method. It transparently allows you to
shape an existing class to be how you want it to be.

To do this you use a few keywords: modifies, alias and rename. Here is an example:

class modifies File {

rename readin oldReadln;
rename open oldOpen;

function readin(){
return self.oldReadIn(1024);

}

function open(string file, string mode)
Console.printin("Opening file $file");
self.oldOpen(file, mode, ™);

}

function toString(){
string str = "

while (!Iself.eof())

39

Chapter 2. Language Reference

str += self.readIn();
return str;

}

function newName() {

}

alias oldName newName;

To modify a class you use the syntatdss modifiesnameOfClass’, this will telferite that the target
for modification is 'nameOfClass’; the class must exist otherwise you will get a compile error. Once this
is done you can add new methods and variables, and manipulate the existing ones.

rename- this takes two labels, the current name and the new name and renames it. The advantage of this
approach is that you can drop in a replacement method and still call the old method within your new
method. The above example re-implementsréazlin method within theFile class such that it does not
require the passing of a number of bytes to read.

alias - this allows you to create a pointer to a function using a different name. This is useful when an API
gets renamed to keep existing code functioning whilst it is moved over. In the above example the name
oldNameis aliased to the functionewName

The above example also adds a rte®tring() which will return the file’s contents in a string.

WARNING: you can potentially cause a lot of confusion using this mechanism, but it is very useful for
debugging and various other uses. You can modify any class within a program. This mechanism can not
be applied to a class with a final modifier - it attemptedte will halt the compliation.

2.12. Namespaces

Namespaces are defined in the following manner:

namespace name of namespace {
variable, namespace, class, and function declarations

}

Namespaces are a means of grouping likewise data and functions into a box to reduce the potential for
name conflicts. Functions, Variables, Classes and even other namespaces can be defined within a
namespace. For example, say we have several different methods for delivering error messages to a user
depending on their preference. We have a couple of ways we can do it; the non namespace approach or
with namespaces.

40

Chapter 2. Language Reference

function text_deliverErrorMessage(string msg) {}
function gtk_deliverErrorMessage(string msg) {}
function gt_deliverErrorMessage(string msg) {}
function network_deliverErrorMessage(string msg) {}

It quickly gets confusing. It can only get worse when you start to add yet another function e.g. for
delivering a warning. What we need is a little organization and to the rescue are namespaces.

namespace Text {

function deliverErrorMessage(string msg){}
}

namespace Gtk {

function deliverErrorMessage(sting msg X}
}

namespace Qt {

function deliverErrorMessage(string msg M}
}

namespace Network {

function deliverErrorMessage(string msg X}
}

The namespace approach is cleaner and more concise. We know that all we have to do is call the
'deliverErrorMessage’ in the correct namespace. The code below shows how you can use the magic of
void variables to get a handle on a namespace and then call the functions within it.

void outputMechanism;

if (wantGtk)

outputMechanism Gik;

else
outputMechanism = Text;

outputMechanism.deliverErrorMessage("We have an Error");

They promote clean and precise code. When a function is defined within a namespace it has to reference
stuff within the namespace as code outside doessengeNamespace.resource

Some readers will note that this can also be achieved with classes and static members, however
namespaces are useful for grouping similar functionality that does not necessarily operate on the same
data; such as a namespace full of mathematical functions for numbers or string routines.

2.12.1. Modifying Existing Namespaces
There is also an alternative syntax for namespaces allowing you to extend an already existing namespace

or create a new one if it does not already exist. This is done like so:

namespace modifies name of namespace {

41

Chapter 2. Language Reference

variable, namespace, class and function declarations

}

When this modifies the namespace it places all items within it in the block in the namespace mentioned.
e.g:

namespace foo {
number i

}

namespace modifies foo {
number j;

}

In the above example the namespéarehas a number i and a number j. The main reason for this syntax
is to allow module writers to easily intermingle native and script code within the namespace. There are
times when placing something in another namespace makes more sense. e.g. placing a custom written
network protocol within a Network namespace.

Itis possible to use the same set of commands on namespaces as you can on clasdedif@ieg
Existing Classefor more information.

2.13. Closures

A closure is best described as an environment capturing anonymous function. They can provide the core
mechanism for a number of different methods of programming. The most prominent use is iteration:
closures can provide a very natural method and syntax for iterating over a set of elements no matter what
their source. Another use is registering code to be executed when necessary. Both these will be covered
within this section.

We shall first observe how closures can be used in the most basic of forms.

1
1

number X
number Yy

object o0 = closure {
number z =y;

y = 1000;
return X + z;
h
y = 10;
x = 10;

42

Chapter 2. Language Reference

Console.printin("If this works the next number should be 20: ${o.invoke()}");
Console.printin("And y should be 1000: $y");

The above code does the following: declares two variables, creates a closure, sets the default values for
the variables and then invokes the closure by calimgke on it. All parts are straight forward except
creating a closure. So what happens wiegie compiles a closure?

A function is created and compiled as you would expect, however there is one exception: if there is a
reference to a variable that is not declared within the closeriee will create a binding to the

variable outside the closure. The binding means that the closure can be passed to another function, stored
in an array and accessed at a later point and the bound variables will be accessible. In the above example
the variablex andy are both referenced within the closure, when a change to the value of x and y is

done, the variables that they are bound to are updated. In the above example the yisiabnged

from 1 (declared value) to 1000 and this change is reflected in the above code. This form of binding is
known as static binding: it means that the variables are bound in the context of the closure’s creation
rather than at the time of the closure’s execution.

Closures are seen ligrite as objects making it easy to pass them from one function to another. The
code below is a modification to the above example and demonstrates passing values into a closure.

function incrementBy(object ¢, number value) {
number X = 99;
return c.invoke(value);

}

function closureEx() {
number X = 1;
object ¢ = closure (ivalue) {
X = X + ivalue;

h

II'x =1

incrementBy(¢, 10);
/I x = 11
incrementBy(¢, 100);
/I x = 111

The above functioglosureExcreates a closure that accepts one value, in this example ocallad, and

adds it to the current value of x. The closure binds to the x variable declared above it. The function
incrementBytakes a closure object and a number, invokes the closure passing it the number. The function
incrementBys provided to demonstrate the nature of binding: even though there is an x variable in
incrementBY, the closure has already bound to the x variable in closureEx.

Passing values into a closure is straight forward, it is the same as calling a function. Declaring is as easy
as declaring the parameters a function requires, except you do not declare the types. Each parameter is of
type void making closures useful for dynamic programming.

43

Chapter 2. Language Reference

function nTimes(number multiplier) {
return closure (base) {
return base * multiplier;
h
}

object times_two = nTimes(2);
object times_ten = nTimes(10);

Console.printin("multiple of 2: 2: ${times_two.invoke(2)}"); 11 (1)
Console.printin("multiple of 2: 5: ${times_two.invoke(5)}"); Il (2)
Console.printin("multiple of 10: 2: ${times_ten.invoke(2)}"); Il (3)
Console.printin("multiple of 10: 5: ${times_ten.invoke(5)}"); Il (4)

The above is yet another example of binding: even when a function exits, a variable bound within a
closure will not be deleted from the program until the closure itself is deleted (by the garbage collector).
The functionnTimescreates a closure that will return the multiplication of the base parameter and the
bound multiplier value. The creation of thienes_twoclosure binds its multiplier value to 2’ and the
creation of thgimes_tenbinds its multiplier value to '10’. Therefore the results of the printout lines are
as follows:

multiple of 2: 2: 4
multiple of 2: 5: 10
multiple of 10: 2: 20
multiple of 10: 5: 50

Hopefully you should have a reasonable understanding of the core features of closures. More examples
on how they can be applied to real world programming problems will be presented in chapter 3.

2.13.1. Recipients, Deliver and Using

Closures are a great way of injecting custom actions into generic code. For instance, if you have written
an advanced structure, you may want to provide a generic sorting function or a generic walking function.
However there is a slight problem: you do not know what type of information may be stored in your
structure. The solution is to write a generic walking or sorting algorithm and use a passed in closure that
can deal with the specifics of the data and provide the overall functionality. This solution can be applied

to a lot of different mechanisms and to make code less ambigteitss, provides a special interface

to passing a closure into a function, checking to see if a function has received a closure and executing the
supplied closure.

To demonstrate how to use the special interface here is the implementation of the fécaipeach
and some code that uses it.

namespace Array {
function each(array a) {
if(recipient() I= null)

{

44

Chapter 2. Language Reference

number i = O;
number size = Array.size(a);

for(i = 0; i < size; i++)
{
void val = deliver(a[i]) ;
if(val == false or val == null)
break;
}

}

amay a=1[1, 2, 3,451
Array.each(a) using (value) {
Console.printin("Array value: $value");

b

The above example passes an array and a closure to Array.each, which then iterates over each element
within the array and delivers the value to the supplied closure. When the closure is invoked it prints out
the value passed to it.

The new keywords introduced in this example are highlighted in betdpient(), deliver() andusing.
recipient()’ is a special function, like 'arguments()’, that is core tofdree engine; the job of the call
is to return an object or null if there is, or is not, a supplied recipient: a closure. 'deliver()’ is another
special function that delivers a set of values to a closure, it simply gets the recipient and caN®kiee
function on it. If there is no recipient, deliver will throw an exception. 'using’ is how you provide a
closure to the function call: you append using after the function call and then define your elthunet
theclosurekeyword.

The code below demonstrates the difference in manually writing the above mechanism.

namespace Array {
function each(array a, object ¢) {
if(¢ != null)

{
number i = 0;
number size = Array.size(a);
for(i = 0; i < size; i++)
{
void val = c.invoke(a[i]);
if(val == false or val == null)
break;
}
}

amay a =1[1, 2, 3,4 5]

45

Chapter 2. Language Reference

Array.each(a, closure (value) {
Console.printin("Array value: $value");

P

It is generally more untidy and and less clear what the intended operation for Array.each is; hence the
addition of this syntax. It is possible to pass a closure onto another function by using recipient() rather
than a new closure.

function someFunction() {
anotherFunction() using recipient();

}

someFunction() using (v) {

h

2.14. Uses and Include

Both theusesand theinclude() instructions telferite to include another script within the current one.
The main difference is thatsesis a compile time directive anidclude() is a runtime directive.

It is important to note thatkrite will, when using or including a script, use a set of paths to resolve
relative file names. It will always try and find the script relative to the current script file first and then
search in the global paths.

In the case of théerite command line applicatiorgprefix/lib/ferite is searched for scripts plus
any directories that are added on the command line by using the -I flag. Native modules are placed in
$prefix/lib/ferite/$platform , where $platform is of the forras-cpu . If either the script or the

module can not be found the compilation of the script will cease with an error. It is suggested that these
are placed at the top of the script (although this is not a requirement).

2.14.1. Uses

The uses keyword is used to import API from other external modules and scripts. The uses keyword is a
compile time directive and provides the method for building up the environment. It can either pull in an
external module, or compile in another script. The syntax is as follows:

uses "name of module or script file", ... :

The name must be in quotes. Wherite gets this call it will do the following: if there is no extension
it will try loading a script in the system’s library paths trying the extensions ".fe’, ".fec’ and '.feh’. The
paths for the native and scripts are defined by the parent application. If an extension igegiteen,

46

Chapter 2. Language Reference

will check to see if it equaldib, if it does it will load the correct native module, ewges

"array.lib"; will causeferite to loadarray.so under unices andrray.dll under windows.

This gives a platform independent method to fiefite to load a native library. This is the method used
to load a native module. If it does not equidh, ferite will treat it as a script and load it.

2.14.2. Include

include() operates the same way @ses except that it can currently only import other scripts. Once the

call has been made - the facilities provided by the imported script can be used. It should be noted that the
return value from the include() call is the return of the main method when the script is loaded. This

allows items to be passed to the parent script.

void v = include ("someScript.fe");

The above code will assign the return value from 'someScript.fe’s main code to the variable v. This is a
useful mechanism for writing plug-in architectures: include a script and have the return be an object that
represents the loaded plug-in.

2.15. Conclusion

We have been on an epic journey: a once foreign language should be familiar and dancing around in your
head, making life easier. It is important that we can now look back at the first example given in this
manual: it should now be easy to recognize and understand what is going on. To aid you a little further,
keywords have been made bold.

/I The importing of extra functionality
uses "console", "array";

/I Declaration of a function. Classes and Namespaces also go here
function processArgument(string argument) {
Console.printin("Argument: " + argument);

}

/I The startup code
Array.each(argv) using (argument) {
processArgument(argument);

h

Notes

1. Iwish to apologize. | am listening to a goon show and couldn’t come up with a better introduction
and | felt it was necessary to write something rather than leave it blank. Besides, it is not often you
get something silly about something nice and important ;)

47

Chapter 3. Solving Common Problems With
ferite

How to solve problems usinfgrite .

48

	The Ferite Programming Language 1.0
	Table of Contents
	List of Tables
	Chapter 1. Introduction
	1.1. What is ferite?
	1.2. What does this documentation provide?
	1.3. Why should I choose ferite?

	Chapter 2. Language Reference
	2.1. Conventions Used
	2.2. Scripts
	2.3. Comments
	2.4. Types
	2.4.1. number
	2.4.2. string
	2.4.3. array
	2.4.4. object
	2.4.5. void

	2.5. Variables
	2.6. Expressions
	2.6.1. Truth Values

	2.7. Operators
	2.7.1. Arithmetic Operators
	2.7.2. Bitwise Operators
	2.7.3. Incremental and Decremental Operators
	2.7.4. Assignment Operators
	2.7.5. Comparison Operators
	2.7.6. Logical Operators
	2.7.7. Index Operator
	2.7.8. Complex Operators

	2.8. Statements and Blocks
	2.9. Control Structures
	2.9.1. If, Then and Else
	2.9.2. Looping
	2.9.2.1. while Loop
	2.9.2.2. for Loop
	2.9.2.3. do .. while Loop

	2.9.3. Manipulating Loops
	2.9.3.1. Break
	2.9.3.2. Continue

	2.9.4. Exception Handling
	2.9.5. Switch

	2.10. Functions
	2.10.1. Variable Argument Functions
	2.10.2. Returning A Value
	2.10.3. Function Overloading
	2.10.4. One Line Functions
	2.10.5. Pass By Reference

	2.11. Classes and Objects
	2.11.1. What is a constructor?
	2.11.2. Inheritance
	2.11.3. Static Members
	2.11.4. Access Control: Public, Protected, Private, Abstract and Final
	2.11.5. Protocols
	2.11.6. Dynamic Objects
	2.11.7. Modifying Existing Classes

	2.12. Namespaces
	2.12.1. Modifying Existing Namespaces

	2.13. Closures
	2.13.1. Recipients, Deliver and Using

	2.14. Uses and Include
	2.14.1. Uses
	2.14.2. Include

	2.15. Conclusion

	Chapter 3. Solving Common Problems With ferite

