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Autoclass III, the most recent released version, com-bines real and discrete data, allows some data to be miss-ing, and automatically chooses the number of classesfrom �rst principles. Extensive testing has indicatedthat it generally produces signi�cant and useful results,the models it uses, rather than, for example, inadequatesearch heuristics. AutoClass III assumes that all at-tributes are relevant, that they are independent of eachother within each class, and that classes are mutuallyexclusive. Recent extensions, embodied in Autoclass IV,let us relax two of these assumptions, allowing attributesto be selectively correlated and to have more or less rel-evance via a class hierarchy.This paper summarizes the mathematical foundationsof AutoClass, beginning with the Bayesian theory oflearning, and then applying it to increasingly complexclassi�cation problems, from various single class mod-els up to hierarchical class mixtures. For each problem,we describe our assumptions in words and mathematics,and then give the resulting evaluation and estimationfunctions for comparing models and making predictions.The derivations of these results from these assumptions,however, are not given.2 Bayesian LearningBayesian theory gives a mathematical calculus of degreesof belief, describing what it means for beliefs to be con-sistent and how they should change with evidence. Thissection brie
y reviews that theory, describes an approachto making it tractable, and comments on the resultingtradeo�s. In general, a Bayesian agent uses a single realnumber to describe its degree of belief in each propositionof interest. This assumption, together with some otherassumptions about how evidence should a�ect beliefs,leads to the standard probability axioms. This resultwas originally proved by Cox [Cox, 1946] and has beenreformulated for an AI audience [Heckerman, 1990]. Wenow describe this theory.2.1 TheoryLet E denote some evidence that is known or could po-tentially be known to an agent; let H denote a hypothe-sis specifying that the world is in some particular state;and let the sets of possible evidence E and possible statesof the world H each be mutually exclusive and exhaus-tive sets. For example, if we had a coin that might betwo-headed the possible states of the world might be



"ordinary coin", "two-headed coin". If we were to tossit once the possible evidence would be "lands heads","lands tails".In general, P (abjcd) denotes a real number describingan agent's degree of belief in the conjunction of proposi-tions a and b, conditional on the assumption that propo-sitions c and d are true. The propositions on either sideof the conditioning bar "j" can be arbitrary Boolean ex-pressions. More speci�cally, �(H) is a \prior" describingthe agent's belief in H before, or in the absence of, see-ing evidence E, �(HjE) is a \posterior" describing theagent's belief after observing some particular evidenceE, and L(EjH) is a \likelihood" embodying the agent'stheory of how likely it would be to see each possible ev-idence combination E in each possible world H.To be consistent, beliefs must be non-negative, 0 �P (ajb) � 1, and normalized, so that PH �(H) = 1 andPE L(EjH) = 1. That is, the agent is sure that theworld is in some state and that some evidence will beobserved. The likelihood and the prior together give a\joint" probability J(EH) � L(EjH)�(H) of both Eand H. Normalizing the joint gives Bayes' rule, whichtells how beliefs should change with evidence;�(HjE) = J(EH)PH J(EH) = L(EjH)�(H)PH L(EjH)�(H) :When the set of possible Hs is continuous, the prior�(H) becomes a di�erential d�(H), and the sums overH are replaced by integrals. Similarly, continuous Eshave a di�erential likelihood dL(EjH), though any realevidence �E will have a �nite probability �L(EjH) �dL(EjH)�EdE .In theory, all an agent needs to do in any given situ-ation is to choose a set of states H, an associated like-lihood function describing what evidence is expected tobe observed in those states, a set of prior expectationson the states, and then collect some relevant evidence.Bayes' rule then speci�es the appropriate posterior be-liefs about the state of the world, which can be used toanswer most questions of interest. An agent can combinethese posterior beliefs with its utility over states U (H),which says how much it prefers each possible state, tochoose an action A which maximizes its expected utilityEU (A) =XH U (H)�(HjEA):2.2 PracticeIn practice this theory can be di�cult to apply, as thesums and integrals involved are often mathematically in-tractable. So one must use approximations. Here is ourapproach.Rather than consider all possible states of the world,we focus on some smaller space of models, and do allof our analysis conditional on an assumption S that theworld really is described by one of the models in ourspace. As with most modeling, this assumption is almostcertainly false, but it makes the analysis tractable. Withtime and e�ort we can make our models more complex,expanding our model space in order to reduce the e�ectof this simpli�cation.The parameters which specify a particular model aresplit into two sets. First, a set of discrete parameters T

describe the general form of the model, usually by spec-ifying some functional form for the likelihood function.For example, T might specify whether two variables arecorrelated or not, or how many classes are present in aclassi�cation. Second, free variables in this general form,such as the magnitude of the correlation or the relativesizes of the classes, constitute the remaining continuousmodel parameters V .We generally prefer a likelihood1 L(EjV TS) which ismathematically simple and yet still embodies the kindsof complexity we believe to be relevant.Similarly, we prefer a simple prior distributiond�(V T jS) over this model space, allowing the result-ing V integrals, described below, to be at least approx-imated. A prior that predicts the di�erent parametersin V independently, through a product of terms for eachdi�erent parameter, often helps. We also prefer the priorto be as broad and uninformative as possible, so our soft-ware can be used in many di�erent problem contexts,though in principal we could add speci�c domain knowl-edge through an appropriate prior. Finally we prefer aprior that gives nearly equal weight to di�erent levelsof model complexity, resulting in a \signi�cance test".Adding more parameters to a model then induces a cost,which must be paid for by a signi�cantly better �t to thedata before the more complex model is preferred.Sometimes the integrable priors are not broad enough,containing meta-parameters which specify some part ofmodel space to focus on, even though we have no priorexpectations about where to focus. In these cases we\cheat" and use simple statistics collected from the evi-dence we are going to use, to help set these priors2. Forexample, see Sections 4.2, 4.5.The joint can now be written as dJ(EV T jS) =L(EjV TS) d�(V T jS) and, for a reasonably-complexproblem, is usually a very rugged distribution in V T ,with an immense number of sharp peaks distributedwidely over a huge high-dimensional space. Because ofthis we despair of directly normalizing the joint, as re-quired by Bayes' rule, or of communicating the detailedshape of the posterior distribution.Instead we break the continuous V space into regionsR surrounding each sharp peak, and search until we tirefor combinations RT for which the \marginal" jointM (ERT jS) � ZV2R dJ(EV T jS)is as large as possible. The best few such \models" RTare then reported, even though it is usually almost cer-tain that more probable models remain to be found.Each model RT is reported by describing its marginaljoint M (ERT jS), its discrete parameters T , and esti-mates of typical values of V in the region R, like themean estimate of V :E(V jERTS) � RV 2R V dJ(EV T jS)M (ERT jS)1Note that when a variable like V sits in a probability ex-pression where a proposition should be, it stands for a propo-sition that the variable has a particular value.2This is cheating because the prior is supposed to be in-dependent of evidence.2



or the V for which dJ(EV T jS) is maximumin R. Whilethese estimates are not invariant under reparameteriza-tions of the V space, and hence depend on the syntaxwith which the likelihood was expressed, the peak is usu-ally sharp enough that such di�erences don't matter.Reporting only the best few models is usually justi�ed,since the models weaker than this are usually many or-ders of magnitude less probable than the best one. Themain reason for reporting models other than the best isto show the range of variation in the models, so that onecan judge how di�erent the better, not yet found, modelsmight be.The decision to stop searching for better models RTthan the current best can often be made in a principledway by using estimates of how much longer it wouldtake to �nd a better model, and how much better thanmodel would be. If the fact that a data value is un-known might be informative, one can model \unknown"as just another possible (discrete) data value; otherwisethe likelihood for an unknown value is just a sum overthe possible known values.To make predictions with these resulting models, areasonable approximation is to average the answer fromthe best few peaks, weighted by the relative marginaljoints. Almost all of the weight is usually in the bestfew, justifying the neglect of the rest.2.3 Tradeo�sBayesian theory o�ers the advantages of being theoret-ically well-founded and empirically well-tested [Berger,1985]. It o�ers a clear procedure whereby one can almost\turn the crank", modulo doing integrals and search, todeal with any new problem. The machinery automati-cally trades o� the complexity of a model against its �tto the evidence. Background knowledge can be includedin the input, and the output is a 
exible mixture of sev-eral di�erent \answers," with a clear and well-foundeddecision theory [Berger, 1985] to help one use that out-put.Disadvantages include being forced to be explicitabout the space of models one is searching in, thoughthis can be good discipline. One must deal with somedi�cult integrals and sums, although there is a huge lit-erature to help one here. And one must often searchlarge spaces, though most any technique will have to dothis and the joint probability provides a good local eval-uation function. Finally, it is not clear how one can takethe computational cost of doing a Bayesian analysis intoaccount without a crippling in�nite regress.Some often perceived disadvantages of Bayesian anal-ysis are really not problems in practice. Any ambiguitiesin choosing a prior are generally not serious, since thevarious possible convenient priors usually do not disagreestrongly within the regions of interest. Bayesian analysisis not limited to what is traditionally considered \statis-tical" data, but can be applied to any space of modelsabout how the world might be. For a general discussionof these issues, see [Cheeseman, 1990].We will now illustrate this general approach by apply-ing it to the problem of unsupervised classi�cation.

3 Model Spaces Overview3.1 Conceptual OverviewIn this paper we deal only with attribute-value, not re-lational, data.3 For example, medical cases might bedescribed by medical forms with a standard set of en-tries or slots. Each slot could be �lled only by elementsof some known set of simple values, like numbers, colors,or blood-types. (In this paper, we will only deal withreal and discrete attributes.)We would like to explain this data as consisting of anumber of classes, each of which corresponds to a dif-fering underlying cause for the symptoms described onthe form. For example, di�erent patients might fall intoclasses corresponding to the di�erent diseases they su�erfrom.To do a Bayesian analysis of this, we need to makethis vague notion more precise, choosing speci�c math-ematical formulas which say how likely any particularcombination of evidence would be. A natural way to dothis is to say that there are a certain number of classes,that a random patient has a certain probability to comefrom each of them, and that the patients are distributedindependently { once we know all about the underlyingclasses then learning about one patient doesn't help uslearn what any other patient will be like.In addition, we need to describe how each class is dis-tributed. We need a \single class" model saying howlikely any given evidence is, given that we know whatclass the patient comes from. Thus we build the multi-class model space from some other pre-existing modelspace, which can be arbitrarily complex. (In fact, muchof this paper will be spend describing various single classmodels.) In general, the more complex each class can be,the less of a need there is to invoke multiple classes toexplain the variation in the data.The simplest way to build a single-class model is topredict each attribute independently, i.e., build it fromattribute-speci�c models. A class has a distribution foreach attribute and, if you know the class of a case, learn-ing the values of one attribute doesn't help you predictthe value of any other attributes. For real attributes onecan use a standard normal distribution, characterizedby some speci�c mean and a variance around that mean.For discrete attributes one can use the standard multino-mial distribution, characterized by a speci�c probabilityfor each possible discrete value.Up to this point we have described the model space ofAutoclass III. Autoclass IV goes beyond this by intro-ducing correlation and inheritance. Correlation is intro-duced by removing the assumption that attributes areindependent within each class. The simplest way to dothis is to let all real attributes covary, and let all discreteattributes covary. The standard way for real attributesto covary is the multivariate normal, which basically saysthat there is some other set of attributes one could de-�ne, as linear combinations of the attributes given, whichvary independently according to normal distributions. Asimple way to let discrete attributes covary is to de�neone super-attribute whose possible values are all possible3Nothing in principle prevents a Bayesian analysis of morecomplex model spaces that predict relational data.3



combinations of the values of the attributes given.If there are many attributes, the above ways to addcorrelation introduce a great many parameters in themodels, making them very complex and, under the usualpriors, much less preferable than simpler independentmodels. What we really want are simpler models whichonly allow partial covariance. About the simplest wayto do this is to say that, for a given class, the attributesclump together in blocks of inter-related attributes. Allthe attributes in a block covary with each other, but notwith the attributes in other blocks. Thus we can builda block model space from the covariant model spaces.Even this simpler form of covariance introduces moreparameters that the independent case, and when eachclass must have its own set of parameters, multipleclasses are penalized more strongly. Attributes whichare irrelevant to the whole classi�cation, like a medi-cal patient's favorite color, can be particularly costly.To reduce this cost, one can allow classes to share thespeci�cation of parameters associated with some of theirindependent blocks. Irrelevant attributes can then beshared by all classes at a minimum cost.Rather than allow arbitrary combinations of classesto share blocks, it is simpler to organize the classes asleaves of a tree. Each block can be placed at some nodein this tree, to be shared by all the leaves below thatnode. In this way di�erent attributes can be explainedat di�erent levels of an abstraction hierarchy. For med-ical patients the tree might have \viral infections" nearthe root, predicting fevers, and some more speci�c viraldisease near the leaves, predicting more disease speci�csymptoms. Irrelevant attributes like favorite-color wouldgo at the root.3.2 Notation SummaryFor all the models to be considered in this paper, theevidence E will consist of a set of I cases, an associatedset K of attributes, of size4 K, and case attribute valuesXik, which can include \unknown." For example, medi-cal case number 8, described as (age = 23; blood-type =A; : : :), would have X8;1 = 23; X8;2 = A, etc.In the next two sections we will describe applicationsof Bayesian learning theory to various kinds of mod-els which could explain this evidence, beginning withsimple model spaces and building more complex spacesfrom them. We begin with a single class. First, a sin-gle attribute is considered, then multiple independentattributes, then fully covariant attributes, and �nallyselective covariance. In the next section we combinethese single classes into class mixtures. Table 1 givesan overview of the various spaces.For each space S we will describe the continuousparameters V , any discrete model parameters T , nor-malized likelihoods dL(EjV TS), and priors d�(V T jS).Most spaces have no discrete parameters T , and only oneregion R, allowing us to usually ignore these parameters.Approximations to the resulting marginals M (ERT jS)and estimates E(V jERTS) will be given, but not de-rived. These will often be given in terms of general func-tions F , so that they may be reused later on. As ap-4Note we use script letters like K for sets, and matchingordinary letters K to denote their size.

propriate, comments will be made about algorithms andcomputational complexity. All of the likelihood func-tions considered here assume the cases are independent,i.e., L(EjV TS) =Yi L(EijV TS)so we need only give L(EijV TS) for each space, whereEi � fXi1; Xi2; Xi3; : : : ; XiKg.4 Single Class Models4.1 Single Discrete Attribute - SD1A discrete attribute k allows only a �nite number of pos-sible values l 2 [1; 2; :::;L] for anyXi. \Unknown" is usu-ally treated here as just another possible value. A set ofindependent coin tosses, for example, might have L = 3with l1 = heads, l2 = tails, and l3 = \unknown". Wemake the assumption SD1 that there is only one discreteattribute, and that the only parameters are the continu-ous parameters V = q1 : : : qL consisting of the likelihoodsL(XijV SD1) = q(l=Xi) for each possible value l. In thecoin example, q1 = :7 would say that the coin was so\unbalanced" that it has a 70 percent chance of comingup heads each time.There are only L � 1 free parameters since normal-ization requires Pl ql = 1. For this likelihood, all thatmatters from the data are the number of cases with eachvalue5 Il = Pi �Xi l. In the coin example, I1 would bethe number of heads. Such sums are called \su�cientstatistics" since they summarize all the information rel-evant to a model.We choose a priord�(V jSD1) = dB(q1 : : : qLjL) � �(aL)�(a)L Yl qa�1l dqlwhich for a > 0 is a special case of a beta distribu-tion [Berger, 1985] (�(y) is the Gamma function [Spiegel,1968]). This formula is parameterized by a, a \hyperpa-rameter" which can be set to di�erent values to specifydi�erent priors. Here we set a = 1=L. This simple prob-lem has only one maximum, whose marginal is given byM (EjSD1) = F1(I1; : : : ; IL; I; L) � �(aL)Ql �(Il + a)�(aL + I)�(a)LWe have abstracted the function F1, so we can refer toit later. The prior above was chosen because it has a formsimilar to the likelihood (and is therefore a "conjugate"prior), and to make the following mean estimate of qlparticularly simpleE(qljESD1) = F2(Il; I; L) � Il + aI + aL = Il + 1LI + 1for a = 1=L. F2 is also abstracted out for use later.Note that while F2(Il; I; L) is very similar to the classicalestimate of IlI , F2 is de�ned even when I = 0. Using ahash table, these results can be computed in order Inumerical steps, independent of L.5Note that �uv denotes 1 when u = v and 0 otherwise.4



Space Description V T R Subspaces Compute TimeSD1 Single Discrete ql ISR1 Single Real �� ISI Independent Attrs Vk S1 � SD1 or SR1 IKSD Covariant Discrete ql1l2::: IKSR Covariant Real �k�kk0 (I +K)K2SV Block Covariance Vb BKb SB � SD or SR NK(IKb +K2b )SM Flat Class Mixture �cVc C R SC � SI or SV NKC(IKb +K2b )SH Tree Class Mixture �cVc JcKcTc R SC � SI or SV NKC(IKb +K2b )Table 1: Model Spaces4.2 Single Real Attribute - SR1Real attribute values Xi specify a small range of the realline, with a center xi and a precision, �xi, assumed to bemuch smaller than other scales of interest. For example,someone's weight might be measured as 70�1 kilograms.For scalar attributes, which can only be positive, likeweight, it is best to use the logarithm of that variable[Aitchison & Brown, 1957].For SR1, where there is only one real attribute, weassume the standard normal distribution, where the suf-�cient statistics are the data mean x = 1IPIi xi, the ge-ometric mean precision c�x = (QIi �xi) 1I and the stan-dard deviation s given by s2 = 1I Pi(xi�x)2. V consistsof a model mean � and deviation �, and the likelihoodis given by the standard normal distribution.dL(xijV SR1) = 1p2��e� 12 ( xi��� )2 dxi:For example, people's weight might be distributed witha mean of 80 kilograms and a deviation of 15. Sinceall real data have a �nite width, we replace dx with�x to approximate the likelihood �L(XijV SR1) =R�x dL(xijV SR1) �= �xdx dL(xijV SR1).As usual, we choose priors that treat the parametersin V independently.d�(V jSR1) = d�(�jSR1) d�(�jSR1)We choose a prior on the mean to be 
at in the range ofthe data, d�(�jSR1) = dR(�j�+; ��)where �+ = maxxi, �� = minxi, by using the generaluniform distributiondR(yjy+; y�) � dyy+ � y� for y 2 [y�; y+]:A 
at prior is preferable because it is non-informative,but note that in order to make it normalizable we mustcheat and use information from the data to cut it o� atsome point. In the single attribute case, we can similarlychoose a 
at prior in log(�).d�(�jSR1) = dR(log(�)jlog(��); log(min�xi))where �� = �+ � ��. The posterior again has just onepeak, so there is only one region R, and the resultingmarginal is

M (EjSR1) = p�2 �( I�12 )(�I) 12 1log(��=min�xi) c�xIsI�1��:Note that this joint is dimensionless. The estimates aresimply E(�jESR1) = x, and E(�jE) = q II+1s. Com-putation here takes order I steps, used to compute thesu�cient statistics.4.3 Independent Attributes - SIWe now introduce some notation for collecting sets ofindexed terms like Xik. A single such term inside a fgwill denote the set of all such indexed terms collectedacross all of the indices, like i and k in E = fXikg �fXik such that i 2 [1; : : : ; I]; k 2 Kg. To collect acrossonly some of the indices we use Sk as in Ei = SkXik �fXi1; Xi2; : : :g, all the evidence for a single case i.The simplest way to deal with cases having multipleattributes is to assume SI that they are all independent,i.e., treating each attribute as if it were a separate prob-lem. In this case, the parameter set V partitions intoparameter sets Vk = Slk qlk or [�k; �k], depending onwhether that k is discrete or real. The likelihood, prior,and joint for multiple attributes are all simple productsof the results above for one attribute: S1 = SD1 or SR1| i.e., L(EijV SI ) =Yk L(XikjVkS1);d�(V jSI) =Yk d�(VkjS1);and M (EjSI) =Yk J(E(k)jS1)where E(k) � SiXik, all the evidence associated withattribute k. The estimates E(VkjESI) = E(VkjE(k)S1)are exactly the same. Computation takes order IK stepshere.4.4 Fully Covariant Discretes - SDA model space SD which allows a set K of discrete at-tributes to fully covary (i.e, contribute to a likelihood innon-trivial combinations) can be obtained by treating allcombinations of base attribute values as particular val-ues of one super attribute, which then has L0 = Qk Lkvalues | so L0 can be a very large number! V consists5



of terms like ql1 l2:::lK , indexed by all the attributes. Ilgeneralizes to Il1l2 :::lK =Xi Yk �xiklk :Given this transformation, the likelihoods, etc. look thesame as before: L(Ei j V SD) = ql1l2 :::lK ;where each lk = Xik,d�(V jSD) = dB(fql1l2 :::lKg j L0);M (EjSD) = F1(fIl1 l2 :::lKg ; I; L0);and 6 E(ql1l2:::lK jESD) = F2(Il1 l2:::lK ; I; L0)Computation takes order IK steps here. This modelcould, for example, use a single combined hair-color eye-color attribute to allow a correlation between people be-ing blond and blue-eyed.4.5 Fully Covariant Reals - SRIf we assume SR that a set K of real-valued attributesfollow the multivariate normal distribution, we replacethe �2k above with a model covariance matrix �kk0 ands2k with a data covariance matrixSkk0 = 1IXi (xik � xk)(xik0 � xk0). The �kk0 must be symmetric, with �kk0 = �k0k, and\positive de�nite", satisfying Pkk0 yk�kk0yk0 > 0 forany vector yk. The likelihood for a set of attributes K is7dL(EijV SR) = dN (Ei; f�kg ; f�kk0g ;K)� e� 12Pkk0 (xk��k)�invkk0 (xk0��k0 )(2�)K2 j�kk0j 12 Yk dxkis the multivariate normal in K dimensions.As before, we choose a prior that takes the means tobe independent of each other, and independent of thecovarianced�(V jSR) = d�(f�kk0g jSR)Yk d�(�kjSR1);so the estimates of the means remain the same,E(�kjESR) = xk. We choose the prior on �kk0 to usean inverse Wishart distribution [Mardia, Kent, & Bibby,1979]d�(f�kk0g jSR) = dW invK (f�kk0g j fGkk0g ; h) �jGkk0j�h2 j�kk0 j�h�K�12 e� 12PKkk0�invkk0Ginvk0k2Kh2 �K(K�1)4 QKa �(h+1�a2 ) KYk�k0 d�kk06F1 and F2 are de�ned on page 4.7�invab denotes the matrix inverse of �ab satisfyingPb�invab �bc = �ac, and j�abj denotes components of the ma-trix determinant of f�abg.

which is normalized (integrates to 1) for h � K and�kk0 symmetric positive de�nite. This is a \conju-gate" prior, meaning that it makes the resulting poste-rior d�(f�kk0g jESR) take the same mathematical formas the prior. This choice makes the resulting integralsmanageable, but requires us to choose an h and all thecomponents of Gkk0. We choose h = K to make theprior as broad as possible, and for Gkk0 we \cheat" andchooseGkk0 = Skk�kk0 in order to avoid overly distortingthe resulting marginalM (EjSR) = QKa �( I+h�a2 )�( 1+h�a2 )I K2 �K(I�1)2 jGkk0jh2jISkk0 +Gkk0j I+h�12 KYk d�xkI��kand estimatesE(�kk0 jESR) = ISkk0 +Gkk0I + h�K � 2 = I + �kk0I � 2 Skk0:If we choose Gkk0 too large it dominates the esti-mates, and ifGkk0 is too small the marginal is too small.The compromise above should only over estimate themarginal somewhat, since it in e�ect pretends to haveseen previous data which agrees with the data given.Note that the estimates are unde�ned unless I > 2.Computation here takes order (I + K)K2 steps. Atpresent, we lack a satisfactory way to approximate theabove marginal when some values are unknown.4.6 Block Covariance - SVRather than just having either full independence or fulldependence of attributes, we prefer a model space SVwhere some combinations of attributes may covary whileothers remain independent. This allows us to avoid pay-ing the cost of specifying covariance parameters whenthey cannot buy us a signi�cantly better �t to the data.We partition the attributes K into B blocks Kb, withfull covariance within each block and full independencebetween blocks. Since we presently lack a model allowingdi�erent types of attributes to covary, all the attributesin a block must be of the same type. Thus real anddiscretes may not mutually covary.We are away of other models of partial dependence,such as the the trees of Chow and Liu described in [Pearl,1988], but choose this approach because it includes thelimiting cases of full dependence and full independence.The evidence E partitions block-wise into E(Kb) (us-ing Ei(K) � Sk2KXik and E(K) � fEi(K)g), each withits own su�cient statistics; and the parameters V parti-tion into parameters Vb = fql1l2 :::lKg or [f�kk0g ; f�kg].Each block is treated as a di�erent problem, except thatwe now also have discrete parameters T to specify whichattributes covary, by specifying B blocks and fKbg at-tributes in each block. Thus the likelihoodL(EijV TSV ) = BYb L(Ei(Kb)jVbSB)is a simple product of block terms SB = SD or SR assum-ing full covariance within each block, and the estimatesE(VbjETSV ) = E(VbjE(Kb)SB) are the same as before.We choose a prior which predicts the block structureB fKbg independently of the parameters Vb within each6



independent blockd�(V T jSV ) = �(B fKbg jSV )Yb d�(VbjSB)which results in a similarly decomposed marginalM (ET jSV ) = �(B fKbg jSV )Yb M (E(Kb)jSB):We choose a block structure prior�(B fKbg jSV ) = 1=KRZ(KR; BR)KDZ(KD ; BD);where KR is the set of real attributes and BR is thenumber of real blocks (and similarly for KD and BD).This says that it is equally likely that there will be oneor two or three, etc. blocks, and, given the number ofblocks, each possible way to group attributes is equallylikely. This is normalized using Z(A;U ), given byZ(A;U ) � UXu=1 (�1)u�1 (U � u+ 1)A(U � u+ 1)! (u� 1)! ;which gives the number of ways one can partition a setwith A elements into U subsets. This prior prefers thespecial cases of full covariance and full independence,since there are fewer ways to make these block combi-nations. For example, in comparing the hypothesis thateach attribute is in a separate block (i.e., all indepen-dent) with the hypothesis that only one particular pairof attributes covary together in a block of size two, thisprior will penalize the covariance hypothesis in propor-tion to the number of such pairs possible. Thus thisprior includes a \signi�cance test", so that a covariancehypothesis will only be chosen if the added �t to thedata from the extra covariance is enough to overcomethis penalty.Computation here takes order NK(IKb + K2b ) steps,where N is the number of search trials done before quit-ting, which would be around (K � 1)! for a completesearch of the space. Kb is an average, over both thesearch trials and the attributes, of the block size of realattributes (and unity for discrete attributes).5 Class Mixtures5.1 Flat Mixtures - SMThe above model spaces SC = SV or SI can be thoughtof as describing a single class, and so can be extendedby considering a space SM of simple mixtures of suchclasses [Titterington et al., 1985]. Figure 1 shows howthis model, with SC = SI , can �t a set of arti�cial real-valued data in �ve dimensions.In this model space the likelihoodL(EijV TSM ) = CXc �cL(EijVcTcSC)sums over products of \class weights" �c, that give theprobability that any case would belong to class c of theC classes, and class likelihoods describing how membersof each class are distributed. In the limit of large C thismodel space is general enough to be able to �t any dis-tribution arbitrarily closely, and hence is \asymtoticallycorrect".

Figure 1: AutoClass III Finds Three ClassesWe plot attributes 1 vs. 2, and 3 vs. 4 for an arti�cial dataset. One � deviation ovals are drawn around the centers ofthe three classes.The parameters T = [C; fTcg] and V = [f�cg ; fVcg]combine parameters for each class and parameters de-scribing the mixture. The prior is similarly broken downasd�(V T jSM ) = F3(C)C! dB(f�cg jC)Yc d�(VcTcjSC)where F3(C) � 6�2C2 for C > 0 and is just one arbitrarychoice of a broad prior over integers. The �c is treatedas if the choice of class were another discrete attribute,except that a C! is added because classes are not distin-guishable a priori.Except in very simple problems, the resulting jointdJ(EV T jS) has many local maxima, and so we mustnow focus on regions R of the V space. To �nd suchlocal maxima we use the \EM" algorithm [Dempster etal., 1977] which is based on the fact that at a maximathe class parameters Vc can be estimated from weightedsu�cient statistics. Relative likelihood weightswic = �cL(EijVcTcSC )L(EijV TSM ) ;give the probability that a particular case i is a memberof class c. These weights satisfy Pc wic = 1, since everycase must really belong to one of the classes. Using theseweights we can break each case into \fractional cases",assign these to their respective classes, and create new\class data" Ec = Sik [Xik; wic] with new weighted-classsu�cient statistics obtained by using weighted sumsPiwic instead of sums Pi. For example Ic = Piwic,xkc = 1Ic Piwicxik, Il1 :::lKc = PiwicQk �xiklk , andd�xkc = QIi �xik wicIc . Substituting these statistics intoany previous class likelihood function L(EjVcTcSC) givesa weighted likelihood L0(EcjVcTcSC ) and associated newestimates and marginals.At the maxima, the weights wic should be consistentwith estimates of V = f[�c; Cc]g from E(VcjERSM ) =E 0(VcjEcSC) and E(�cjERSM ) = F2(Ic; I; C). To reacha maxima we start out at a random seed and repeatedlyuse our current best estimates of V to compute the wic,and then use the wic to re-estimate the V , stopping whenthey both predict each other. Typically this takes 10 �100 iterations. This procedure will converge from any7



starting point, but converges more slowly near the peakthan second-order methods.Integrating the joint in R can't be done directly be-cause the product of a sum in the full likelihood is hardto decompose, but if we use fractional cases to approxi-mate the likelihoodL(EijV TRSm) = CXc �cL(EijVcTcSC)�= Yc (�cL(EijVcTcSC ))wicholding the wic �xed, we get an approximate joint:M (ERT jSM ) �= F3(C)C!F1(fIcg ; I; C)Yc M 0(EcT jSC)Our standard search procedure combines an explicitsearch in C with a random search in all the other pa-rameters. Each trial begins converging from classes builtaround C random case pairs. The C is chosen randomlyfrom a log-normal distribution �t to the Cs of the 6�10best trials seen so far, after trying a �xed range of Cs tostart. We also have developed alternative search proce-dures which selectively merge and split classes accordingto various heuristics. While these usually do better, theysometimes do much worse.The marginal joints of the di�erent trials generallyfollow a log-normal distribution, allowing us to estimateduring the search howmuch longer it will take on averageto �nd a better peak, and how much better it is likelyto be.In the simpler model space SMI where SC = SI thecomputation is order NICK, where C averages over thesearch trials. N is the number of possible peaks, outof the immense number usually present, that a compu-tation actually examines. In the covariant space SMVwhere SC = SV this becomes NKC(IKb +K2b ).5.2 Class Hierarchy and Inheritance - SHThe above class mixture model space SM can be gener-alized to a hierarchical space SH by replacing the aboveset of classes with a tree of classes. Leaves of the tree,corresponding to the previous classes, can now inheritspeci�cations of class parameters from \higher" (closerto the root) classes. For the purposes of the parametersspeci�ed at a class, all of the classes below that class pooltheir weight into one big class. Parameters associatedwith \irrelevant" attributes are speci�ed independentlyat the root. Figure 2 shows how a class tree, this timewith SC = SV , can better �t the same data as in Fig-ure 1. See [Hanson, Stutz & Cheeseman, 1991] for moreabout this comparison.The tree of classes has one root class r. Every otherclass c has one parent class Pc, and every class has Jcchild classes given by Ccj, where the index j ranges overthe children of a class. Each child class has a weight�cj relative to its siblings , with PJcj �cj = 1, and anabsolute weight �Ccj = �cj�c, with �r = 1.While other approaches to inheritance are possible,here each class is given an associated set of attributesKc, which it predicts independently through a likeli-hood L(Ei(Kc)jVcTcSC) and which no class above or be-low it predicts. To avoid having redundant trees which

Figure 2: AutoClass IV Finds Class Tree �10120 BetterLists of attribute numbers denote covariant blocks withineach class, and the ovals now indicate the leaf classes.describe the same likelihood function, only Kr can beempty, and non-leaves must have Jc � 2.We need to ensure that all attributes are predictedsomewhere at or above each leaf class. So we call Acthe set of attributes which are predicted at or beloweach class, start with Ar = K, and then recursively par-tition each Ac into attributes Kc \kept" at that class,and hence predicted directly by it, and the remainingattributes to be predicted at or below each child ACcj .For leaves Ac = Kc.Expressed in terms of the leaves the likelihood is againa mixture:L(EijV TSM ) = Xc:Jc=0�c Yc0=c;Pc ;PPc ;:::;rL(Ei(Kc0)jVc0Tc0SC)allowing the same EM procedure as before to �nd localmaximas. The case weights here wci =PJcj wCcji (withwri = 1) sum like in the 
at mixture case and de�neclass statistics Ec(Kc) = Sk2Kc ;i [Xik; wci].We also choose a similar prior, though it must nowspecify the Kc as well:d�(V T jSH ) =Yc d�(JcKc j AcSH )Jc! dB([j �cjjJc) d�(VcTc j KcSC)d�(JcKc j AcSH ) = F3(Jc � 1)Kc! (Ac �Kc)!(Ac + �rc)Ac!for all subsets Kc of Ac of size in the range [1� �cr; Ac],except that F3(Jc�1) is replaced by �0Jc when Ac = Kc.Note that this prior is recursive, as the prior for eachclass depends on the what attributes have been chosenfor its parent class.This prior says that each possible number of attributeskept is equally likely, and given the number to be kepteach particular combination is equally likely. This priorprefers the simpler cases of Kc = Ac and Kc = 1 and soagain o�ers a signi�cance test. In comparing the hypoth-esis that all attributes are kept at class with a hypothesisthat all but one particular attribute will be kept at thatclass, this prior penalizes the all{but{one hypothesis inproportion to the number of attributes that could havebeen kept instead.8



The marginal joint becomesM (ERT jSH) �=Yc d�(JcKc j AcSH )Jc!F1([j ICcj ; Ic; Jc)M 0(Ec(Kc)TcjSC)and estimates are againE(VcjERSH) = E 0(VcjEc(Kc)SC )and E(�cjjERSH ) = F2(Icj; Ic; Jc).In the general case of SHV , where SC = SV , computa-tion again takes NKC(IKb +K2b ), except that the J isnow also an average of, for each k, the number of classesin the hierarchy which use that k (i.e., have k 2 Kc).Since this is usually less than the number of leaves, themodel SH is typically cheaper to compute than SM forthe same number of leaves.Searching in this most complex space SHV is challeng-ing. There are a great many search dimensions where onecan trade o� simplicity and �t to the data, and we haveonly begun to explore possible heuristics. Blocks can bemerged or split, classes can be merged or split, blockscan be promoted or demoted in the class tree, EM itera-tions can be continued farther, and one can try a randomrestart to seek a new peak. But even the simplest ap-proaches to searching a more general model space seemto do better than smarter searches of simpler spaces.6 ConclusionThe Bayesian approach to unsupervised classi�cation de-scribes each class by a likelihood function with some freeparameters, and then adds in a few more parameters todescribe how those classes are combined. Prior expecta-tions on those parameters V T combine with the evidenceE to produce a marginal joint M (ERT jS) which is usedas an evaluation function for classi�cations in a regionR near some local maxima of the continuous parametersV and with some choice of discrete model parameters T .This evaluation function optimally trades o� the com-plexity of the model with its �t to the data, and is usedto guide an open-ended search for the best classi�cation.In this paper we have applied this theory to modelspaces of varying complexity in unsupervised classi�ca-tion. For each space we provides a likelihood, prior,marginal joint, and estimates. This should provideenough information to allow anyone to reproduce Au-toClass, or to use the same evaluation functions in othercontexts where these models might be relevant.References[Aitchison & Brown, 1957] J. Aitchison and and J. A. C.Brown. The Lognormal Distribution. UniversityPress, Cambridge, 1957.[Berger, 1985] J. O. Berger. Statistical Decision Theoryand Bayesian Analysis. Springer-Verlag, New York,1985.[Cheeseman et al., 1988a]Peter Cheeseman, James Kelly, Matthew Self, JohnStutz, Will Taylor, & Don Freeman. Autoclass: aBayesian Classi�cation system. In Proceedings of theFifth International Conference on Machine Learning,1988.
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