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Abstract

We describe AutoClass, an approach to unsupervised classification based upon the classical
mixture model, supplemented by a Bayesian method for determining the optimal classes. We
include a moderately detailed exposition of the mathematics behind the AutoClass system.

We emphasize that no current unsupervised classification system can produce maximally
useful results when operated alone. It is the interaction between domain experts and the machine
searching over the model space, that generates new knowledge. Both bring unique information
and abilities to the database analysis task, and each enhances the others’ effectiveness. We
illustrate this point with several applications of AutoClass to complex real world databases, and

describe the resulting successes and failures.

6.1 Introduction

This chapter is a summary of our experience in using an automatic classification pro-
gram (AutoClass) to extract useful information from databases. Tt also gives an outline
of the principles that underlie automatic classification in general, and AutoClass in par-
ticular. We are concerned with the problem of automatic discovery of classes in data
(sometimes called clustering, or unsupervised learning), rather than the generation of
class descriptions from labeled examples (called supervised learning). In some sense, au-
tomatic classification aims at discovering the “natural” classes in the data. These classes
reflect basic causal mechanisms that makes some cases look more like each other than
the rest of the cases. The causal mechanisms may be as boring as sample biases in the
data, or could reflect some major new discovery in the domain. Sometimes, these classes
were well known to experts in the field, but unknown to AutoClass, and other times
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the classes were a surprise to the experts because they revealed something important
about the domain that was previously unknown. Such discovery of previously unknown
structure occurs most frequently when there are many relevant attributes describing each
case, because humans are poor at seeing structure in a large number of dimensions.

We wish to emphasize that the discovery of important structure (classes) in data is
rarely a one-shot process of throwing some database at AutoClass (or similar program)
and getting back something useful. Instead, discovery of important structure is usually
a process of finding classes, interpreting the results, transforming and/or augmenting the
data, and repeating the cycle. In other words, the process of discovery of structure in
databases is an example of the well known hypothesize-and-test cycle of normal scientific
discovery. We believe that a strong interaction between the discovery program and the
expert will be the common pattern in Knowledge Discovery in Databases (KDD) for the
foreseeable future, because each have complementary strengths. A structure searching
program like AutoClass can search huge amounts of data looking for multi-dimensional
structures with a speed and accuracy that no human could hope to match. An expert,
on the other hand, has domain knowledge that the program lacks. This enables the
expert to interpret the results of the search in a way that computers cannot. Knowledge
discovery is then an interactive process that involves finding patterns, interpreting them,
generating new hypothesis, getting more data and then repeating the process. We shall
illustrate this process through case studies from our experience in using AutoClass.

We first give a quick outline of what AutoClass does and how it does it, followed by
a more detailed description of the theory and details. We then give a number of case
studies of AutoClass in action.

6.2 Bayesian Classification

The word “classification” is ambiguous. Often it means assigning a new object/case to
one of an existing set of possible classes. As used in this paper, however, it means finding
the classes themselves from a given set of “unclassified” objects/cases (unsupervised
classification). Once such a set of classes has been found, they can be the basis for
classifying new cases in the first sense.

In the Bayesian approach to unsupervised classification, the goal is to find the most
probable set of class descriptions (a classification) given the data and prior expectations.
The introduction of priors automatically enforces a tradeoff between the fit to the data
and the complexity of the class descriptions, giving an automatic form of Occam’s razor
(section 6.3.4). Alternate approaches, such as maximum likelihood, that try to find
the class descriptions that best predict the data, have trouble because the best such
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Symbols used in this paper.

classification is a set of single case classes, perfectly fitting each case, with a class for
each unique case. This extreme “classification” has little predictive power for new cases.

6.2.1 AutoClass Model Overview

We limit ourselves to data for which instances can be represented as ordered vectors of
attribute values. In principle, each attribute represents a measurement of some instance
property common to all instances. These are “simple” properties in the sense that they
can be represented by single measurements: discrete values such as “true” or “false”, or
integer values, or real numbers. For example, medical case #8, described as (age = 23,
blood-type = A, weight = 73.4kg, ...) would have Xg1 =23, X5 2 = A, etc. We make no
attempt to deal with relational data where attributes, such as “married-to”, have values
that are other instances. Note however, that these limitations are solely a property of
our specific method of modeling classes, and could be overcome by using more expressive
models.

In discussing a probabilistic model, we refer to a probability distribution or density
function (p.d.f.) that gives the probability of observing an instance possessing any par-
ticular attribute value vector. Ideally, such a model would take into account everything
known about the processes potentially involved in generating and observing an instance.
A Bayes Net relating input and output attributes would be suitable for instances of a
well-understood process. For general KDD systems like AutoClass, where little is known
about underlying processes, relatively simple statistical models are used.
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Probabilistic models invariably contain free parameters, such as Bernoulli probabil-
ities or the Gaussian mean and variance, which must either be fixed or removed (by
integration) before instance probabilities can be computed. Thus it is useful distinguish
between the p.d.f.’s functional form and its parameter values, and we denote these by
T and V respectively. S will denote the space of allowed p.d.f.’s 17, T, while 7 denotes
implicit information not specifically represented.

For AutoClass, our fundamental model is the classical finite mixture distribution. This
is a two part model. The first gives the interclass mixture probability that an instance
X; is a member of class C;, independently of anything else we may know of the instance:
P(X; e Cj | V., T., S, 7). The interclass p.d.f. T; is a Bernoulli distribution characterized
by the class number J and the probabilities of V.. Each class C; is then modeled by a
class p.d.f., P()?Z | X; € Cj, V},Tj, S,T), giving the probability of observing the instance
attribute values )?Z conditional on the assumption that instance X; belongs in class
C;. The class p.d.f. T} is a product of individual or covariant attribute p.d.f.’s Tj;
e.g. Bernoulli distributions for nominal attributes, Gaussian densities for real numbers,
Poisson distributions for number counts, etc. It is not necessary that the various 7; be
identical, only that they all model the same subset of the instance attributes.

We differ from most other classifiers in that we never assign any instances to the
classes. Instead we use a weighted assignment, weighting on the probability of class
membership: P()?i,XZ' €y |I7j,Tj,S,I). We hold that no finite amount of evidence
can determine an instance’s class membership. We further hold that the classification
p.d.f. T and parameter values V constitute a more informative class description than any
set of instance assignments. As a practical matter, the weighted assignment approach
eliminates the brittle behavior that boundary surface instances can induce in classification
systems that decide assignments. More importantly, it allows any user to apply decision
rules appropriate to that user’s current goals.

6.2.2 AutoClass Search Overview

Given a set of data X we seek two things: for any classification p.d.f. T" we seek the
maximum posterior (MAP) parameter values 17, and 1irrespective of any V we seek the
most probable T". Thus there are two levels of search. For any fixed T specifying the
number of classes and their class models, we search the space of allowed parameter values
for the maximally probable V. This is a real valued space of generally high dimension,
subject to strong constraints between the parameters. There are many local maxima and
we have no simple way to determine the global maximum except by generate and test.
Thus parameter level search requires an expensive numerical optimization.

The model level search involves the number of classes J and alternate class models 7.
There are several levels of complexity. The basic level involves a single p.d.f. T; common
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to all classes, with search over the number of classes. A second level allows the individual
T; to vary from class to class. Model level search is subject to the usual combinatorial
explosion of possibilities as attribute number increases, but the Occam factor inherent
in the Bayesian approach limits the probability of complex class models for any choice
of model and non-delta priors (section 6.3.4).

Note that we have described the search problem for unsupervised classification. Su-
pervised classification is much easier: since we already know the class assignments, the
parameter level search reduces to a single step computation of the MAP parameter val-
ues. The model level search retains some of its combinatorial complexity, but with known
class memberships we can seek the most probable model for each class individually. The
additional information obtained by knowing the class assignments makes it much easier
to explore the space of allowed class models, and obtain maximally informative class
descriptions.

6.3 AutoClass in Detail

We begin with the standard assumption that the data instances X; are conditionally in-
dependent given the classification p.d.f. 17, T'. Thus we claim that any similarity between
two instances is accounted for by their class memberships, and that there are no further
interactions between data. Under this assumption the joint data probability is just the
product of the individual instance probabilities.

6.3.1 AutoClass Basic Model

Our classification level, or interclass, model Vc, T. 1s the classical Finite Mixture model
of Everitt & Hand (1981) and Titterington et al. (1985). This postulates that each
instance belongs to one and only one, unknown, member of a set of J classes C}, with
a probability P(X; € C; |K7C,Tc, S,T). Note that this probability is independent of the
instance attribute vector X;. In principle the classes constitute a discrete partitioning of
the data, and thus the appropriate p.d.f. is a Bernoulli distribution. Its parameters 170
are a set of probabilities {m1,..., 7}, constrained that 0 < m; <1 and Z]' m; = 1. Thus
we have:

P(X; € Cj|V,,T.,S,I) = 7;. (6.3.1)

Since the Dirichlet (multiple Beta) distribution is conjugate! to the Bernoulli, we use a
uniform minimum information version for the prior probability distribution on the ;:

1A conjugate prior is one which, when multiplied with the direct probability, gives a posterior prob-
ability having the same functional form as the prior, thus allowing the posterior to be used as a prior in
further applications.
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Py, ms |12, 8,1) = g 1‘?{/3 _ Hw‘ (6.3.2)
The MAP parameter estimates for the superv1sed case, where [; is the known number of
instances assigned to Cj, are then @; = (I; + 1/J)/(I +1).

The instances X; from each class are assumed to possess attribute vectors )?Z that are
independently and identically distributed w.r.t. the class as P()?Z | X; € Cj, V},Tj, S, T).
The p.d.f. (7],T] thus gives the conditional probability that an instance X; would have
attribute values )FZ if it were known that the instance is a member of class C;. This class
distribution function is a product of distributions modeling conditionally independent
attributes k:?

P(Xi | Xi € Gy, V}, 15, S,7) = [ [ P(Xik | Xi € Cj, Vik, Ty, S, 7). (6.3.3)
k

Individual attribute models P(X;;, | X; € Cj, V;k, Tjk, S, T) include the Bernoulli and Pois-
son distributions, and Gaussian densities. They are detailed in the next section.

Combining the interclass and intraclass probabilities, we get the direct probability that
an instance X; with attribute values )FZ is a member of class Cj:

P(Xi, Xi € Cy |V}, T3, V., 0, $,Z) = mj [ [ P(Xur | Xi € €y, Vi, Ty, S, ). (6.3.4)
k

The normalized class membership probability 1s obtained from this by normalizing over
the set of classes.

The probability of observing an instance X; with attribute values X;, regardless of its
class is then:
P(XZ | ‘7, T, S,I) = Z(ﬂ']’ H P(XZk |Xz € Cj, V;k, T]'k, S,I)) (635)

J A

Thus the probability of observing the database X is:

PX |V, T,5,7) = [[D _(m [ P(Xix | Xi € Cj, Vig, Tjx, S, 7). (6.3.6)
i g k

So far we’ve only described a classical finite mixture model. We convert this to a
Bayesian model by introducing priors, at this point only on the parameters, obtaining
the joint probability of the data and the parameter values:

P(XV |TST)=P(V|TSI)P(X|VTST) (6.3.7)
= PVT.SD) [[POVis | TS DI[ID (w5 [T P(Xir 1 X € G5, Vir TS ).
ik i k

2For exposition we show all attributes as if independent, with independent p.d.f.’s and parameter
priors. The shift to partially or fully covariant attributes is only a matter of bookkeeping.
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6.3.2 AutoClass Search and Evaluation

We seek two things: For any given classification form 7' = T,,77,...,T; and data X,
we want the MAP parameter values obtained from the parameters’ posterior p.d.f.:
P(X,V |T,S,T) P(X,V |T,S,T)

P(V|X,T, S,T)= = — - . 6.3.8
v ) P(X|T,8,I)  [dVP(X,V|T,S,T) (6.3.8)

Independently of the parameters, we want the MAP model form, conditional on the data,
where the posterior probability of the p.d.f. form T is:

P(T'|S,T)P(X |T,5,7) P(T'|S,Z) fdVP(X,V |T,S,T)

P(T'|X,S,T) P(Y15.7) = P(X]5.7) (6.3.9)
x P(T|S,I)/dI7P(X,I7|T,S,I) (6.3.10)
x /dVP(X,mT,S,I):P(X|T,S,I). (6.3.11)

The proportionality in (6.3.10) is due to dropping the normalizing constant P(X | S,7),
which is not generally computable. This is not a problem, since we are only interested
in relative probabilities of a limited number of alternate models T'. The proportionality
in (6.3.11) holds when we take the prior probability P(7'|S,Z) to be uniform over all
T of interest. This is reasonable when we have no strong reason to favor one model
over another. P(7'|S,Z) is only a single discrete probability. In any but toy problems,
the product over the data probabilities and/or the parameter priors will quite dominate
any non-zero P(7T'| X, S, 7). Thus we implicitly use P(T' | S,Z) to exclude models deemed
impossible, by ignoring those models, and substitute P(X | T, 5,7) for P(T'| X, S, ) when
making decisions.

Frustratingly, attempts to directly optimize over or integrate out the parameter sets
I_/’]'k, in equation (6.3.7), founder on the JT products resulting from the product over
sums. Only minuscule data sets can be processed without approximation.

The classical application of the mixture assumption suggests a useful approach. If
we knew the true class memberships, as in supervised classification; and augmented the
instance vectors X; with this information, the probabilities P(X] | X} € Cj, V},Tj, S, T)
would be zero whenever X! ¢ C;. The sum over j in equation (6.3.7) would degenerate
into a single non-zero term. Merging the two products over k, and shifting the attribute
product within, gives

P VIT,.S7) = PWITSOTI T (= []PCXLx 1 Vie: T, SST)] - (6.3.12)
J Xlec; k
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= PVIT.8,T) [[I=} T P(X% | Vik, Tyx, S.T)] (6.3.13)
j k
where n; is the number of cases assigned to Cj, and the X]”k are sets of statistics,
corresponding to attribute p.d.f.’s Tjz, obtained from the X/ € C;.

This pure product form cleanly separates the classes with their member instances.
Class parameters can be optimized or integrated out, without interaction with the other
class’s parameters. The same holds for the independent attribute terms within each
class. Clearly, for supervised classification, the optimization and rating of a model is a
relatively straightforward process. Unfortunately, this does not hold for unsupervised
classification.

One could use the mixture assumption directly, applying this known assignment ap-
proach to every partitioning of the data into J non-empty subsets. But the number of
such partitionings is Stirling’s S}J), which approaches J! for small J. This technique is
only useful for verifying our approximations with extremely small data and class sets.

We are left with approximation. Since equations (6.3.4) and (6.3.7) are easily evalu-
ated for known parameters, the obvious approach is a variation of the EM algorithm of
Dempster et al. (1977) and Titterington et al. (1985). Given the set of class distri-
butions 7T}, and the current MAP estimates of the values for 7; and V;k, the normalized
class conditional probabilities of equation (6.3.4) provide us with weighted assignments
w;; in the form of normalized class probabilities:

W = P(XZ,XZ EC]' |‘7,T,S,I)
YT Y PN, X € GV, T, S T)

X 5 HP(Xik | X; € Cj,V;k,j}k,S,I), (6.3.14)
k

We can use these instance weightings to construct weighted statistics corresponding to
the known class case. For a discrete attribute, these are the class weighted number of
instances possessing each discrete value w;z;. For a real valued attribute modeled by a
Gaussian, these are the class weighted number, mean, and variance:

wy = Zwlj; mip = w]»_l Zwinik; sz»k = w]»_l Zwij(Xik - m]'k)z. (6315)

Using these statistics as if they represented known assignment statistics permits reesti-
mation of the parameters with the partitioning of equation (6.3.13). This new parameter
set then permits reestimation of the normalized probabilities. Cycling between the two
reestimation steps carries the current parameter and weight estimates toward a mutually
predictive and locally maximal stationary point.

Unfortunately, there are usually numerous locally maximal stationary points. And
excepting generate-and-test, we know of no method to find, or even count, these maxima
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— so we are reduced to search. Because the parameter space is generally too large
to allow regular sampling, we generate pseudo-random points in parameter (or weight)
space, converge to the local maximum, record the results, and repeat for as long as time
allows.

Having collected a set of local maxima for model T, and eliminated the (often many)
duplicates, we use the local statistics X" = {wj,X]’.’k} to approximate P(X |T,5,7)
using:

P(X"|T,5,1)= /dV PV IT,8,7) [ [ (=7 T PCX% | Vik, Tyw, S. D). (6.3.16)
j 3
However we cannot use P(X" | T, S,7) as a direct approximation to P(X | T, S,7). Equiv-
alence between P(X,V |T,5,7) and P(X",V |T,5,7) holds only when the weights w;;
used to compute the X]”k are indicators: w;; € {0,1} and Z]' w;ij = 1. As the wy; diverge
from indicator values, P(X" | T, S,T) becomes significantly less than P(X |7, 5,7). This
is easily seen by computing the ratio of the likelihoods given by the two methods at the
MAP parameters 17:

PO |V, T,8,7) _ TLilS; (% T P(Yix | X5 € G, Vi, Ty, S.2))]
PX" [V, T,5,7) [T;(%" T PS5 | Vie, T2, 5,7)

(6.3.17)

This ratio is is observed to approach 1 when the weights w;; and parameters V;k are mu-
tually predictive and the weights approach indicator values. As values diverge from either
condition, this ratio’s value increases drastically. Thus we approximate P(X | T, S,7) as:

P(X |V,T,5,7)
P(X"|V,T,51T)

P(X|T,S,Z7) =P(X"|T, S, 1) (6.3.18)

This substitution of P(X |T,5,7)" for P(X |T,5,7) is a gross simplification, and
currently the weakest point in our development. Mathematically we are claiming that
P(X |I7,T, S,7) and P(X"| V,T, S, T), taken as functions of V, are everywhere in the
same proportion as at the MAP value V. We have no reason to believe this claim. How-
ever, we find that both probabilities fall off rapidly, in orders of magnitude, as 1% diverges
from the V. Moreover, the rate of this fall off is approximately exponential in the num-
ber of data. Thus for even moderate® amounts of data, the only significant contributions
to either P(X |7, S,7) or P(X" |T,S,Z) come from the region of V near KA/, where the

proportion is most likely to hold.

3Moderate, in this context, may be taken to be of order 100 instances per class. This varies with the

degree that T and V give distinct classes, which may be characterized by the degree to which the w;;
approach indicator values.
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The P(X |T,5,7)" defined above is computed for fixed X" corresponding to a par-
ticular local V. For any given p.d.f. form T, we expect repeated EM searches to find
diverse distinct stationary points, with corresponding distinct MAP parameter sets V.
How then, can we claim that any one P(X | T, S,Z)" represents P(X |T,S,Z), when the
latter is supposed to be the integral over the full parameter space V and implicitly in-
cludes all weightings compatible with the datal’ Our experience shows that the largest
P(X |T,S,Z)" can dominate the other peak integrals to a remarkable degree. Ratios
between the two largest integrals of 10* to 10° are routine when the number of attribute
values, I X K| exceeds a few hundred. With a few million attribute values, the ratio
may easily reach €' ~ 10**. In such circumstances we feel justified in reporting the
largest known P(X’ |T'Z)" as a reasonable approximation to P(X | T'ST), and in using it
as our approximation to P(7'| X.S 7). But it must be admitted that we have not proven
that non-peak regions never make significant contribution to P(T | XS Z), nor have we
satisfactorily determined the conditions under which our assumptions hold.

When one or more subsets of n,, class p.d.f.’s T; have identical functional form, the
corresponding blocks of f/; may be interchanged without altering P(X |7,5,7). In ef-
fect, the probability peak at v possesses n,,! mirror images. Thus for any such n,,,
P(X |T,S,Z)" needs to be scaled by n,,,!. The magnitude of this scaling is usually small
relative to that of P(X |T,.5,7)", but may be significant when comparing T with very
different numbers of classes.

Thus we rate the various models T by their best P(X |T'ST)" and report on them in
terms of the corresponding MAP parameterizations V. If one model’s marginal dominates
all others, it is our single best choice for classifying the database. Otherwise we report
the several that do dominate.

6.3.3 AutoClass Attribute Models

Each class model is a product of conditionally independent probability distributions over
singleton and/or covariant subsets of the attributes. For the medical example given in
section 6.2.1, blood type is a discrete valued attribute which we model with a Bernoulli
distribution while age and weight are both scalar real numbers that we model with a
log-Gaussian density.

The only hard constraint is that all class models, used in any classifications that are
to be compared, must model the same attribute set. Attributes deemed irrelevant to a
particular classification cannot simply be ignored, since this would affect the marginal
probabilities, as is shown below.

AutoClass provides basic models for simple discrete (nominal) and several types of nu-
merical data. We have not yet identified a satisfactory distribution function for ordered
discrete (ordinal) data. In each case we adopt a minimum or near minimum informa-
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tion prior, the choice being limited among those providing integrable marginals. This
limitation has seriously retarded development of the more specific models, but numerical
integration is considered to be too costly for EM convergence.

In the following we describe in detail the basic elements of the independent Bernoulli
and Gaussian models, and note other attribute probability distributions that we use to
assemble the class models.

e Discrete valued attributes (sex, blood-type, ...) — Bernoulli distributions with
uniform Dirichlet conjugate prior. For the singleton case with Ly possible values,
the parameters are Vip = {¢jr1...¢jrr,}, such that 0 < ¢;p < 1, ZlLk Gr = 1,

where
P(Xir =1|Xi € Cj, Vi, Tix, S\ T) = qjm (6.3.19)
Ly
T(Ly+1) A
Plg:ri,...,q; Tip, S 1T) = ——— 2 Sk 6.3.20
(q]kl’ ’q]kLk| Gk ) [F(1+L1_k)]Lk Eq]kl ( )
- Wikl + Ll—k
Gk _— (6.3.21)
I Wj +1

For the covariant case, say sex and blood type jointly, we apply the above model
to the cross product of individual attribute values. Thus female and type A would
form a single value in the cross product. The number of such values, and thus
the number of parameters required, is the product of the individual attribute’s Ly

However the prior of equation (6.3.20) severely limits the probability of large
covariant p.d.f.’s; as discussed in section 6.3.4.

e Real valued location attributes (spatial locations) — Gaussian densities with either
a uniform or Gaussian prior on the means. We use a Jeffreys prior (6.3.24) on a
singleton attribute’s standard deviation, and the inverse Wishart distribution (Box
& Tiao 1973)  as the variance prior of covariant attribute subsets. For a single
attribute with uniform priors, using the statistics defined in equation (6.3.15):

1 —%(—X”ZZ””)Q
P(Xir | Xi € Cj, pjn, ojr, Tj, S, 7)) = \/Q_Tajke g , (6.3.22)
1 ~
P(ujr | Tjx, 5,7) = ———i, ik = mik, (6.3.23)
Hlmaw = Hhnin
-1
- Okmax -~ Wj
P(U]k |j}k‘a S;I) = O’],k1 |:10g m]a 0-]2](; = S?ku}]—_]i_l (6324)
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Real valued scalar attributes (age, weight) — Log-Gaussian density model obtained
by applying the Gaussian model to log(X;; —ming ). See Aitchison & Brown (1957).

Bounded real valued attributes (probabilities) — Gaussian Log-Odds obtained by
applying the Gaussian to log((X;; — ming)/(mazy — X;1)) (under development).

Circular or angular real valued attributes — von Mises-Fisher distributions on the
circle and n-sphere (under development) See Mardia et al. (1979).

Integer count valued attributes — Poisson distribution with uniform prior per
Loredo (1992).  No covariant form has been developed.

Missing values — Discrete valued attribute sets are extended to include “missing”
as an additional attribute value, to be modeled as any other value. Numerical
attributes use a binary discrete probability ¢;; for “missing” and 1—g¢; for “known”,
with the standard numerical model conditioned on the “known” side. With the
Gaussian model this gives:

P(Xix = missing | Xi € Cj, qjk, ik, Ok, Tin, S, Z) = gy, (6.3.25)

1{ T7Hjk
P(Xix = | Xi € Cj, i, iy, o, Tk, S,T) = Sl 13] qf"“)e_i( ik ) : (6.3.26)
V27aj,
Hierarchical models — represent a reorganization of the standard mixture model,
from a flat structure, where each class is fully independent, to a tree structure where
multiple classes can share one or more model terms. A class is then described by
the attribute model nodes along the branch between root and leaf. This makes it
possible to avoid duplicating essentially identical attribute distributions common to
several classes. The advantage of such hierarchical models lies in eliminating excess
parameters, thereby increasing the model posterior. See Hanson et al. (1991) for

a full description of our approach. Other approaches are possible: see Boulton &

Wallace (1973).

Irrelevant attributes — Irrelevant attributes pose a problem which we have only
recently recognized. If an attribute is deemed irrelevant to all classification models
under consideration, it can simply be deleted from the database. If an attribute is
deemed irrelevant to only some of the models, one is tempted to simply eliminate
it from consideration by those models, and to model it in the others. This is what
we have done in AutoClass, but it is an error.

- -/
Consider two models V;,T; and V; | Tj’, identical in both form and parameter values

except that the latter includes an additional Vj—’k//,j}/k, modeling one additional
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attribute k’. Let T](k, be any appropriate p.d.f. except a delta function, Then for
any instance Xj;:

P(X: | Xi €C;,V},T3,5,7) > P(Xi| Xi € CLV , T), S,7). (6.3.27)

This is a simple consequence of the fact that a non-delta p.d.f. cannot predict any
value with probability 1. Taken to the limit, we find that a class model which
ignores all attributes will always be more probable than one which models any
attributes. Obviously, the results of modeling with different attribute sets are
incommensurable.

How should we handle irrelevant attributesI' For a classifier, an attribute is irrele-
vant when all classes possess identical p.d.f.’s for that attribute. In the hierarchical
model described above, this can be achieved by pushing the attribute model V;k Tk
up to the root node, where it is inherited by all leaves. In an ordinary mixture
model the same effect can be obtained by using a common 7}, with every V;k fixed
at the MAP values estimated from a single class classification model. This will suf-
fice for the case when all classes within a classification ignore the attribute, and
allow comparison between classifications that deem different attribute subsets irrel-
evant. The case where only some classes within a classification ignore an attribute
1s yet undecided.

In principle, our classification model should also include a prior distribution P(7"| S, 7)
on the number of classes present and the individual class model forms 7;. Currently we
take this distribution to be uniform and drop it from our calculations. Thus we ignore
any prior information on alternate classification model probabilities; relying solely on our
parameter priors for the Occam factor preventing over fitting of the models. We find this
quite sufficient.

6.3.4 The Occam Factor

We have several times mentioned an “Occam Factor”, implying that Bayesian parameter
priors can somehow prevent the over fitting that is a problem with maximum likelihood
optimization of any kind of probabilistic model. Consider that every single parameter
introduced into a Bayesian model brings its own multiplicative prior to the joint prob-
ability, which always lowers the marginal. If a parameter fails to raise the marginal by
increasing the direct probability by a greater factor than the prior lowers the marginal,
we reject the model incorporating that parameter. In the mixture models used by Au-
toClass, each class requires a full set of attribute model parameters, each with its own
prior. Those priors always favor classifications with smaller numbers of classes, and do so
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overwhelmingly, once the number of classes exceeds some small fraction? of the database
size.

Similar effects limit model complexity within the classes. Simple independent attribute
models are usually favored simply because they require fewer parameters than the corre-
sponding covariant models. Ten real valued attributes require 20 parameters for modeling
with independent Gaussians, and 55 for the full covariant Gaussian. Ten binary discrete
attributes also require 20 parameters for modeling with independent Bernoulli distribu-
tions, but 1024 are needed for a fully covariant Bernoulli distribution. One needs a great
many very highly covariant instances to raise a fully covariant model’s marginal above
the independent model’s.

Both of the foregoing effects are confirmed throughout our experience with AutoClass.
For data sets of a few hundred to a few thousand instances, class models with large order
covariant terms are generally rated far lower than those combining independent and/or
small order covariant terms. We have yet to find a case where the most probable number
of classes was not a small fraction of the number of instances classified. Nor have we
found a case where the most probable number of model parameters was more than a
small fraction of the total number of attribute values. Over fitting simply does not occur
when Bayesian mixture models are correctly applied.

6.3.5 The AutoClass Implementation

AutoClass was written in Lisp, taking full advantage of the extraordinary programming
environment provided by the Symbolics Lisp Machine. It has been adapted to operate in
most Lisp environments, and a data parallel version exists for star-Lisp on the CM-3. A
C translation is in preparation. Some details regarding the computational considerations
encountered in implementing AutoClass will be found in Stutz & Cheeseman (1995).
A NASA technical report giving fuller details of the mathematics and implementation is
in preparation.

6.4 Case Studies

6.4.1 Infrared Astronomical Satellite (IRAS) Data.

The first major test of AutoClass on a large scale real-world database was the application
of AutoClass to the IRAS Low Resolution Spectral Atlas. This atlas consisted of 5425
mean spectra of IRAS point sources. Each spectrum consists of 100 “blue” channels in
the range 7 to 14 microns, and another 100 “red” channels in the range from 10 to 24

4 Typically of order 1%, but potentially larger for very distinct classes.
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microns. Of these 200 channels; only 100 contain usable data. These point source spectra
covered a wide range of intensities, and showed many different spectral distributions. We
applied AutoClass to this spectral database by treating each of the 100 spectral channels
(intensities) as an independent normally distributed single real value. The log-normal
model is preferable for such scalar data, but several percent of the reported intensity
values were negative. Also, adjacent spectral values are expected to be highly correlated,
but 1t was not obvious how to incorporate neighbor correlation information. Thus we
knew from the beginning that we were missing important information, but we were
curious how well AutoClass would do despite this handicap.

Our very first attempts to apply AutoClass to the spectral data did not produce
very good results, as was immediately apparent from visual inspection. Fortunately,
inspection also exposed the cause of the problem. The spectra we were given had been
“normalized” —in this case normalization meant scaling the spectra so that all had the
same peak height. This normalization meant that noisy spectra were artificially scaled
up (or down) depending on whether the noise at the peak was higher or lower than the
average. Since all values in a single spectrum were scaled by the same constant, an
incorrect scaling constant distorted all spectral values. Also, spectra with a single strong
peak were scaled so that the rest of the spectrum was close to the noise level. We solved
the “normalization problem” by renormalizing the data ourselves so that area under the
all curves is the same. This method of normalization is much less sensitive to noise than
the peak normalization method.

The experts who provided us with this data tried to make life easy for us by only giving
us the brightest spectra from 1/4 of the sky (without telling us about this sampling bias).
When we found this out, we requested all the spectra in the atlas to work with. Because
this larger atlas included much noisier spectra, we found a new problem—some spectral
intensities were negative. A negative intensity, or measurement, is physically impossible,
so these values were a mystery. After much investigation, we finally found out that the
processing software had subtracted a “background” value from all spectra. This pre-
processing, of course, violates the basic maxim that analysis should be performed on the
data actually measured, and all “corrections” should be done in the statistical modeling
step.

Once these problems had been removed, we used AutoClass II to classify all 5425 spec-
tra. The results of this classification are presented in Cheeseman et al. (1989), and it
revealed many interesting new discoveries. The first observation is that the AutoClass
classes (77 of them) gave a significantly different classification than that previously pro-
vided with the atlas. This earlier IRAS spectral classification was based on expected
features and human generated criteria based on visual inspection. AutoClass was able
to make many subtle distinctions between spectra that superficially look similar, and
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these distinctions were not previously known. Some of the classes, such as the blackbody
emission classes, and the silicate emission classes were known from previous studies, but
the fine distinctions within these broad classes were not previously known.

The TRAS spectral classification also revealed other astronomically significant results.
For example, by finding which classes the few known carbon stars occured in, we were
able to triple the number of known (or suspected) carbon stars. AutoClass also revealed
a large number of blackbody stars with a significant IR excess, presumably due to dust
surrounding the star. Another indirect result of the classification is that the average
spectral intensities of a class cancel the noise present in single spectra, making finer
detail visible. For example, this noise suppression revealed a very weak spectral “bump”
at 13 microns in some classes that is completely invisible in the individual spectra. Many
of these discoveries are discussed in Goebel et al. (1989).

The AutoClass classification was sufficiently good, that it revealed problems with the
data that had been previously missed. In particular, some of the blackbody sub-classes
showed an excess of energy at the blue end of the spectrum. There 1s no plausible physical
mechanism that could produce such a blue excess in blackbody stars, so this result was a
mystery. Eventually, we discovered that this excess was the result of incorrect calibration.
Originally, Vega (a 10,000 degree star) was chosen as the reference star, but later in the
mission the reference star was switched to @ Tau (a 4000 degree star). Unfortunately,
the software was not altered to reflect this change, thus causing the calibration error. Of
course, none of this change information was documented, so it took considerable search
for us to find the cause.

Other calibration errors and artifacts of the data processing also gradually came to
light as we discussed our results with the domain experts. In particular, we found out
that the spectra were often contaminated with cosmic ray “spikes”, and that a “filter”
in the software removed these spikes from the data before averaging the different spectra
together. Unfortunately, this filter could not tell the difference between a strong spectral
line and a cosmic ray hit, so it often eliminated perfectly good spectra and yet still
passed contaminated spectra. Again the lesson to be drawn from this experience is that
the raw observation data should be made available, and effects such as cosmic rays and
background noise should be statistically modeled—the data itself should not be modified!

6.4.2 IRAS Lessons

A major lesson of our IRAS experience is that experts tend to pass on only the minimum
information that they think the data analyst needs. They are attempting to be helpful—
but in practice they are not treating the analyst as a full partner. We kept finding new
unexplained results, and only by confronting the experts with them would they reveal
other sources of data, or processing steps they had neglected to mention. Finally, in
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frustration, we insisted that our experts give us all the data that they had, and «ll the
documentation on the data processing that had been performed instead of feeding it to us
piecemeal. Even then we found out about other data (e.g. star variability index), that
could have aided the classification, well after we had published our classification. We
believe that a data analyst using tools like AutoClass must become moderately expert in
the field. This is in order to understand all the biases in the data collection; to understand
the processing that occured before the data was made available for analysis; to ensure
that all the relevant data has been located; and to aid the interpretation process.

Another major lesson learned from the TRAS experience is that finding new and inter-
esting results (classes) is not enough—unless some plausible interpretation of these results
can be found, they will probably be ignored. This interpretation step often involves fol-
low up data or analysis to test possible hypotheses. As an example, we discovered subtle
distinctions in the silicate emission spectra (e.g. classes 81 and 11 in Cheeseman et
al. (1989), ) and needed to explain these differences. Since the creators of the IRAS
atlas had provided visual matches for each point source, we used this data to see how
stellar type related to the discovered classes. Also, the average galactic latitude of the
classes was significantly different, indicating that one class is more distant, and intrinsi-
cally brighter. The most likely interpretation of these results is that there are different
classes of M-giants, with different galactic distributions, and these classes can be dis-
tinguished by subtle differences in their infrared spectra. Note that we could do this
follow up investigation relatively easily because the IRAS spectral atlas included consid-
erable auxiliary data about each point-source (galactic coordinates, variability, optical
identification, etc.).

Finding the classes in a database i1s only part of the task—the remaining task is to
communicate the class descriptions to the expert. AutoClass generates reports that
fully describe the classes, but these can be difficult to interpret for a novice. In the
IRAS classification case, we generated spectral plots that displayed the class spectral
values graphically. This graphical output is shown in Cheeseman et al. (1989), and
is immediately understood by domain experts. We also classified the classes (a meta-
classification) and used these meta-classes to organize the full classification. The experts
found this meta-classification very helpful. We cannot over-emphasize the importance of
generating easily understood outputs, but unfortunately, really good outputs tend to be
domain specific.

6.4.3 DNA Intron Data

This project began when we received a database of about 3000 donor and acceptor sites
(intron/exon boundaries) from human DNA. In most species, the DNA that codes for a
particular protein (a gene) is broken up by the insertion of stretches of DNA (introns)
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that are spliced out of the corresponding messenger RNA before it is used to produce
proteins. The segments of DNA that contribute to the final RNA are called exons.
The beginning of exon/intron boundary is called the donor site, and the corresponding
intron/exon end is called the acceptor site. The intron length (between a donor and an
acceptor site) can vary from a minimum of about 80 bases, to many thousands of bases.
The donor database consisted of an ordered list of the possible bases (A,G,C,T) at the
10 bases before the splice site, and 40 bases of the adjoining intron (and similarly for the
acceptor site database). It has been traditionally assumed that in human DNA there is
only one general type of donor and acceptor site, because they all use the same splicing
machinery. We decided to test this assumption by applying AutoClass to both the donor
and acceptor databases separately.

Our initial classification revealed many classes that describe essentially one unique base
sequence per class. In other words, there are splice sites that are practically duplicated
many times in human DNA. Further investigation showed that most of these nearly
identical sites occured in the same gene, usually in an uninterrupted sequence. When
the nearly identical sites occur in different genes, these genes were found to be practically
identical as a result of gene duplication. Since duplication within a gene, and duplication
of genes themselves is well known in the molecular biology community, these very tight
classes were of no interest.

In order to eliminate the duplication problem, we pruned the data to eliminate all
sequences that had greater than 50% identity. This pruning reduced our data by roughly
30%, and allowed AutoClass to find 3 classes in the remaining data (for both the donor
and acceptor sites). Inspection of these classes showed a very obvious pattern. For the
largest class (about 33%) every position in both donors and acceptors was “C rich”—
that is, every position had a significantly higher probability of having a C than the global
average. The other 2 classes (donor and acceptor) were TA rich and G rich respectively.
Note that this pattern was discovered even though AutoClass was treating each position
independently, indicating a strong causal mechanism producing this uniform base bias.
This base bias even extended into the exon region, although the signal was much weaker
there. This is surprising, because the choice of bases in an exon is thought to be dictated
entirely by its corresponding biological function through the protein it encodes.

Having found these clear classes, we entered the next phase of data analysis: trying to
interpret the discovered pattern. One question that occured to us was whether the class of
donor site was correlated with the class of the corresponding acceptor site. Unfortunately,
our original databases did not record the corresponding sites in the separate donor and
acceptor databases. Also, the original databases were extracted from a very old version of
GenBank, using obscure (and irreproducible) filtering techniques. We were fortunate in
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finding collaborators in the Stanford University Molecular Biology Lab®, who extracted
all human introns (with flanking exons) from the current version of GenBank for us.
This gave us a much larger database, and all the auxiliary information we needed to do
followup studies.

Our followup studies revealed the following:

e The class of a donor site was indeed highly correlated with the corresponding
acceptor site. For the C-rich class, for example, not only were both the donor and
acceptor sites C-rich, but the entire intron between them was C-rich. A similar
pattern was observed for the other classes.

e The same classes were observed in mouse genes, and where there are corresponding
genes in mice and humans, they have the same classes, indicating that whatever
created the pattern we observed has persisted for at least 60 million years.

e The base-frequency pattern extends into the flanking exons, but not as strongly as
that observed in the introns.

e If one intron is, say, TA rich, then there is a high probability that any neighboring
introns will also be TA rich.

From these observations, we can reasonably conclude that DNA gene relative base fre-
quency patterns can persist for long stretches (in some cases many thousands of bases).
Also, these base frequencies occur in other species and the frequency type is preserved
throughout evolution. Recent sequencing of whole chromosomes (from yeast and worms)
show similar long stretches of G + C rich (or poor) variation, on both coding and non-
coding regions. All of these observations point toward some unknown essential mecha-
nism that operates on DNA and creates/maintains/uses these base frequency patterns.
Note that AutoClass, combined with human interpretation and additional testing found
this general pattern, even though it extends well beyond the original very restricted
database. Unfortunately, these results have not been published, so these discoveries
remain unknown to the molecular biology community.

6.4.4 LandSat Data

The largest database that we have applied AutoClass to is a 1024 x 1024 array of LandSat
pixels, where each pixel records 7 spectral intensities from a 30m square ground patch.
Our test image covers about a 30km square region in Kansas, taken by the LandSat/TM
satellite in August 1989. Our goal was to find classes in this set of over 1 million “cases”
(i.e. pixels). This large image data set put such strong computational demands on

50Our collaborators were Doug Brutlag and Tod Klingler
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our standard LISP AutoClass (running on a Symbolics machine) that we developed a
parallel version of AutoClass (in LISP) to run on a Connection machine, and later on
a CM-2. Fortunately, the structure of AutoClass lends itself to parallelization, so that
recent parallel versions allow large database processing in reasonable time.

Instead of treating each spectral value independently within a class (as we did in early
versions of AutoClass), we allowed the values to be fully correlated with each other,
with separate correlations for each class. The theory behind this correlated version of
AutoClass is presented in Hanson et al. (1991). This model still assumes that the
pixels are independent of their neighbors. That is, we do not take into account the
spatial correlation of neighboring pixels, even though we know this is a strong source
of additional information. We did this only because AutoClass is a general purpose
tool that cannot be easily modified to fit the known structure of a new domain. We
are currently investigating methods for integrating spatial correlation information from
multiple images.

Like other case studies described in this chapter, the results from LandSat data clas-
sification were improved significantly by transforming the data (preprocessing), so that
the assumptions built into AutoClass better fit the input data. In the case of LandSat
pixels, it is well known that the observed intensity of a patch on the ground is affected
by the ground slope of that patch. This means that if we attempt a classification on
the given observed intensities, we get different classes for the same ground cover type,
depending on their particular ground slopes. For this reason, it is better to use the ratio
of spectral intensities for each pixel instead, since the ratio i1s not affected by a common
scaling factor, such as the ground slope effect. For all pixels, we replaced the given spec-
tral values with the ratio of the spectral value to the sum of all spectral values (for that
pixel). Note that this transformation of the data does not destroy information, since the
original values can be recovered (to within numerical noise). Since the spectral ratios are
strictly positive (i.e. they are scale parameters), we assume that their value distribution
is log-normally distributed, so we use Log(spectral ratio) as our input data.

Readers may wonder why we rail against preprocessing of data by others; yet do the
same thing ourselves. Our answer is twofold. Firstly, we encourage transformations of
the data that do not destroy information (reversible transformations), if this makes the
transformed data better fit the assumptions of the particular data analysis technique
being used. Secondly, our major objection is to undocumented preprocessing, especially
when the informal data description does not match the data as given.

Before we ran AutoClass on our transformed data, we histogramed the Log(spectral
ratio) values to see if our log-normal distribution was reasonable. We were surprised
to find that the data values were highly quantized, with large numbers of pixels having
exactly the same value. Further investigation revealed that although the original spectral
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intensity values were recorded at 8-bit accuracy, most pixels were assigned to a much
smaller range of intensity bins. That is, although there were 256 possible intensity values,
in practice only a very small subset of these values were observed. This is because the
camera’s dynamic range was selected to record the extreme values of intensity (to avoid
saturation effects), so that nearly all values occur within a much smaller range. We
“dithered” these values by adding small random errors with a standard deviation of 1/2
a bin width, thus “smoothing” the data values. This dithering corrupted the data, but
it avoided problems associated with the strong quantization effect.

The results of classifying all the pixel intensity data, using full correlation between the
spectral values in each class description, are presented in Kanefsky et al. (1994).  This
classification found 93 classes in the best classification, and these classes were themselves
classified to produce a meta-classification. This meta-classification makes the individual
classes easier to interpret. By far the greatest aid to interpreting these pixel classes is to
threshold the class membership probability so as to assign each pixel to 1ts most probable
class, then to plot the 2-D distribution of the resulting classes. For many classes, these
2-D plots immediately suggest an interpretation to the human eye, such as roads, rivers,
valley bottoms, valley edges, fields of particular crops, etc. Other classes (with many
fewer members) seem to contain pixels with a mixture of basic types. For example, a
pixel partially falling on a highway, and partially falling on surrounding grass, results in
a mixed pixel. If there are enough of these mixed pixels, with roughly the same mixing
proportion, they form a class of their own. Clearly, in the mixed pixel case, the classes
are not particularly meaningful, but it is surprising that the majority of classes seem to
be composed of pure pixels of a single type.

We find that applying a general purpose classification tool like AutoClass can produce
interesting and meaningful classes, even when the tool’s basic assumptions do not fit the
data very well. In particular, failing to take neighbor pixel class correlation into account,
and the assumption that every pixel belongs to one and only one class, do not fit the
LandSat pixel data well, yet the results are surprisingly good. A better classification of
LandSat type data requires a special purpose classification tool that takes into account
the known properties of the domain.

6.5 Summary of Lessons Learnt

The above case studies illustrate a number of lessons learnt in applying AutoClass to
real databases. We summarize these lessons as follows:

e Data analysis/Knowledge discovery is a process. — Discovery of patterns
in data is only the beginning of a cycle of interpretation followed by more testing.
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¢ General data mining tools are only good for exploratory analysis. —
Once the initial patterns have suggested new domain specific hypotheses, these
hypotheses need to be further investigated using tools adapted to the hypotheses.

¢ Beware undocumented or irreversible data preprocessing. — Key terms
that may indicate information destroying pre-processing include calibrated, cor-
rected, averaged, normalized, adjusted, compressed, and so forth.

¢ Beware hidden biases in data collection. — Such bias may dominate the
resulting classes, as in the initial Intron classes.

¢ Difficulty in extracting data from experts. — Experts tend to supply only
the information they think is needed — an analyst must become a mini-expert in
the domain to really understand the data.

¢ Data transformation to fit analysis tool. — These transformations can greatly
aid pattern discovery. Try different representations. Try different pattern discovery
tools.

¢ Visually inspecting the data before use. — This step usually catches gross

errors and obvious patterns.

e Unsupervised classification versus supervised classification. Discovery of
(unsupervised) classes may or may not be of help in predicting a target variable.

¢ Domain-specific display of resulting classes. — What your program outputs
is all that the domain expert sees. To make that output useful, it is necessary to
provide display and interpretation appropriate to the specific problem domain.
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