Asymptote

For version 1.03

S tote

This file documents Asymptote, version 1.03.
http://asymptote.sourceforge.net
Copyright (©) 2004-5 Andy Hammerlindl, John Bowman, and Tom Prince.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU General Public License. On Debian systems, the GPL
can be found at /usr/share/common-licenses/GPL.

http://asymptote.sourceforge.net

Table of Contents

1 Description............coiiiiiiiiinna.. 1
2 Installation.................. 2
2.1 UNIX binary distributions 2
2.2 MacOS X binary distributions. 2
2.3 Microsoft Windows 2
2.4 Configuringot 3
2.5 Search paths.......... ... i 4
2.6 Compiling from UNIX source..............cooiiiiiiinnaa .. 4
2.7 Editing modes ... 5
2.8 OV S 6
2.9 Uninstall ... 6

3 Examples............oiiiiiiiiiiiiiiiL, 7
4 Programming..............coeeiiiennnnnnn. 9
41 Data types. ..o 9
4.2 Guidesand paths i 13
4.3 PenS .o 20
4.4 Transforms 25
4.5 Frames and picturest 26
4.6 Files ..o 30
4.7 SETUCHUTES . o oot 32
4.8 OPETAtOrS . .ttt ettt et e e 34
4.8.1 Arithmetic & logical operators.......................... 34

4.8.2 Self & prefix operators 35

4.8.3 User-defined operators, 35

4.9 Tmplicit scaling.t 36
410 Functions...........oooim 37
4.10.1 Default argumentso 38
4.10.2 Named argumentsooiiiiinneiineeen... 38
4.10.3 Restarguments........... i 39
4.10.4 Mathematical functions 40

411 ATTAYS oot 41
412 CastS . et 45
413 Import . .ov e 46
414 StAtIC .ot 49

5 Drawingcommands....................... 51
D1 draw .o 51
5.2 il . 53
5.3 Clip o 54

5.4 label ... 54

6 LaTeX USAge.....ovvtirernennnennennnennns 58
7 Basemodules................... 63
Tl plainm ... 63
T2 simpleX 63
T3 Math .. 63
T4 gEOMEtLIY 64
7.0 SEaLS 64
T.6 patterns. 64
T7 palette.o 64
T8 BT oot 64
7.9 drawtree......... ... 64
710 feynman............. i 64
7.11 roundedpath 65
712 MetaPoSto 65
713 unicode....... ... 65
714 latind ..o 65
71D babel ... 65
716 embed 66
TAT graph 66
TA8 threeo 90
TL9 1Aght .o 94
720 graphl 94
721 s0lids ... 99
7.22 featpost3D.........oiii 99
8 Options.......ccoviiiiiiiiiiiennnnnnnns 101
9 Interactivemode........................ 103
10 Graphical User Interface................ 104
11 PostScript to Asymptote 105
12 HelP e e oo e e 106
13 Acknowledgments 107

ii

Chapter 1: Description 1

1 Description

Asymptote is a powerful descriptive vector graphics language that provides a mathematical
coordinate-based framework for technical drawings. Labels and equations are typeset with
LaTeX, for overall document consistency, yielding the same high-quality level of typesetting
that LaTeX provides for scientific text. By default it produces PostScript output, but it
can also generate any format that the ImageMagick package can produce.

A major advantage of Asymptote over other graphics packages is that it is a high-level
programming language, as opposed to just a graphics program: it can therefore exploit the
best features of the script (command-driven) and graphical-user-interface (GUI) methods
for producing figures. The rudimentary GUI xasy included with the package allows one
to move script-generated objects around. To make Asymptote accessible to the average
user, this GUI is currently being developed into a full-fledged interface that can generate
objects directly. However, the script portion of the language is now ready for general use by
users who are willing to learn a few simple Asymptote graphics commands (see Chapter 5
[Drawing commands|, page 51).

Asymptote is mathematically oriented (e.g. one can use complex multiplication to rotate
a vector) and uses LaTeX to do the typesetting of labels. This is an important feature for
scientific applications. It was inspired by an earlier drawing program (with a weaker syntax
& capabilities) called MetaPost.

Many of the features of Asymptote are written in the Asymptote language itself. While
the stock version of Asymptote is designed for mathematics typesetting needs, one can write
Asymptote modules that tailor it to specific applications. A scientific graphing module has
already been written (see Section 7.17 [graph], page 66). Examples of Asymptote code and
output, including animations, are available at

http://asymptote.sourceforge.net/gallery/.
The Asymptote vector graphics language provides:

e a natural coordinate-based framework for technical drawings, inspired by MetaPost,
with a much cleaner, powerful C++-like programming syntax;

e LaTeX typesetting of labels, for overall document consistency;

e compilation of figures into virtual machine code for speed, without sacrificing portabil-
ity;

e the power of a script-based language coupled to the convenience of a GUI,;

e customization using its own C++-like graphics programming language;

e sensible defaults for graphical features, with the ability to override;

e a high-level mathematically oriented interface to the PostScript language for vector
graphics, including affine transforms and complex variables;
e functions that can create new (anonymous) functions;

e deferred drawing that uses the simplex method to solve overall size constraint issues
between fixed-sized objects (labels and arrowheads) and objects that should scale with
figure size;

e a standard for typesetting mathematical figures, just as TEX/LaTeX is the de-facto
standard for typesetting equations.

http://asymptote.sourceforge.net/gallery/

Chapter 2: Installation 2

2 Installation

After following the instructions for your specific distribution, please see also Section 2.4
[Configuring], page 3.

We recommend subscribing to new release announcements at
http://freshmeat.net/subscribe/50750

Users may also wish to monitor the Asymptote forum:
http://sourceforge.net/forum/monitor.php?forum_id=409349

and provide guidance to others by rating the Asymptote project:
http://freshmeat.net/projects/asy

2.1 UNIX binary distributions

Here are the commands that the root user can use to install the Linux 1386 binary dis-
tribution of version x.xx of Asymptote for a specific platform ARCH in /usr/local. The
executable file will be /usr/local/bin/asy (the optional texhash command installs a La-
TeX style file):

tar -C / -zxf asymptote-x.xx.ARCH.tar.gz
texhash

Example code will be installed by default in /usr/local/share/doc/asymptote.

Alternatively, Debian users can install Hubert Chan’s Asymptote prebuilt binary from either
of the following sites:

http://packages.debian.org/asymptote
http://www.uhoreg.ca/programming/debian/

2.2 MacOS X binary distributions

MacOS users can either compile the UNIX source code (see Section 2.6 [Compiling from
UNIX source|, page 4) or install the contributed Asymptote binary available at

http://www.hmug.org/pub/Mac0S_X/BSD/Applications/Publishing/asymptote/

2.3 Microsoft Windows

Users of the Microsoft Windows operating system can install the self-extracting Asymptote
executable asymptote-install-x.xx.exe. The recommended installation directory is
c:\Program Files\Asymptote. If you wish to install Asymptote in another directory,
say d:\Asymptote, you can tell Asymptote where to find plain.asy and its other base
modules by creating a file ;USERPROFILEY/ .asy/config.asy containing the lines

import settings;

dir="d:\Asymptote";

A working TeX implementation (such as the one available at http://www.miktex.org)
will be required to typeset labels. The Python interpretor from http://www.python.org
is only required if you wish to try out the graphical user interface (see Chapter 10 [GUI],
page 104).

Example code will be installed by default in c:\Program Files\Asymptote\examples.

http://freshmeat.net/subscribe/50750
http://sourceforge.net/forum/monitor.php?forum_id=409349
http://freshmeat.net/projects/asy
http://packages.debian.org/asymptote
http://www.uhoreg.ca/programming/debian/
http://www.hmug.org/pub/MacOS_X/BSD/Applications/Publishing/asymptote/
http://www.miktex.org
http://www.python.org

Chapter 2: Installation 3

2.4 Configuring

In interactive mode, or when given the -V option (the default when running
Asymptote on a single file under MSDOS), Asymptote will automatically invoke
the PostScript viewer gv (under UNIX) or gsview (under MSDOS; available from
http://www.cs.wisc.edu/ ghost/gsview/) to display graphical output. These defaults
may be overridden with the configuration variable psviewer.

Configuration variables are most easily set as Asymptote variables in the
configuration file (by default, .asy/config.asy in the user’s home directory or
JiUSERPROFILE}/ .asy/config.asy under MSDOS); see [configuration file], page 101. Here
are the default values of several important configuration variables.

Under UNIX:

import settings;

psviewer="gv";

pdfviewer="xpdf";

gS="gS";

python="";

Under MSDOS:

import settings;

psviewer="c:\Program Files\Ghostgum\gsview\gsview32.exe";
pdfviewer="c:\Program Files\Adobe\Acrobat 7.0\Reader\AcroRd32.exe";
gs="c:\Program Files\gs\gs8.53\bin\gswin32.exe";
python="c:\Python24\python.exe";

For PDF format output, the gs setting specifies the location of the PostScript-to-PDF
processor gs and pdfviewer specifies the location of the PDF viewer. The graphical user
interface may also require setting the variable python if Python is installed in a nonstandard
location.

The configuration variable dir can be used to adjust the search path (see Section 2.5
[Search paths], page 4).

By default, Asymptote attempts to center the figure on the page, assuming that the
paper type is letter. The default paper type may be changed to a4 with the configuration
variable papertype. Currently, only these two paper types are defined (the addition of a
new paper type, say poster, will also require defining posterSize in the dvips configuration
file).

The following configuration variables normally do not require adjustment:

latex
dvips
convert
display
animate
xasy

Configuration variables may also be set or overwritten with a command line option:
asy -psviewer=gsview -V venn

Alternatively, system environment versions of these configuration variables may be set
in the conventional way. The corresponding environment variable name is obtained by

http://www.cs.wisc.edu/~ghost/gsview/

Chapter 2: Installation 4

converting the configuration variable name to upper case and prepending ASYMPTOTE_: For
example, to set the environment variable

ASYMPTOTE_PSVIEWER="c:\Program Files\Ghostgum\gsview\gsview32.exe";
under Microsoft Windows XP:
1. Click on the Start button;
Right-click on My Computer;
Choose Properties from the popup menu;
Click the Advanced tab;

Click the Environment Variables button.

AN el S

To properly support interactive mode, the PostScript viewer should be capable of
automatically redrawing whenever the output file is updated. The default UNIX PostScript
viewer gv supports this (via a SIGHUP signal). Users of ggv will need to enable Watch
file under Edit/Postscript Viewer Preferences and gsview users will need to enable
Options/Auto Redisplay (however, under MSDOS it is still necessary to click on the gsview
window; under UNIX one must manually redisplay by pressing the r key).

The patches supplied in the patches directory fix known bugs in the UNIX PostScript
viewer gv-3.5.8 and gv-3.6.1 (most notably the backwards-incompatible command line
options of gv-3.6.1). Another bug in gv-3.6.1 requires it to be explicitly configured with
./configure --enable-signal-handle for it to work properly with Asymptote’s interac-
tive mode (these patches will be in the next release of gv).

After downloading gv-3.6.1 from http://ftp.gnu.org/gnu/gv/ and denoting the lo-
cation of the Asymptote source directory by SOURCE, here are the steps to install a properly
working gv (as the UNIX root user):
tar -zxf gv-3.6.1.tar.gz
cd gv-3.6.1
cat SOURCE/patches/gv-3.6.1-*.patch | patch -pi
./configure --enable-signal-handle
make install

2.5 Search paths
In looking for Asymptote system files, asy will search the following paths, in the order
listed:

1. The current directory;

2. The directory .asy in the user’s home directory (%USERPROFILEY,/.asy under MSDOS);

3. A list of one or more directories specified by the configuration variable dir (separated
by : under UNIX and ; under MSDOS);

4. The system directory (default: /usr/share/asymptote under UNIX and c:\Program
Files\Asymptote under MSDOS).
2.6 Compiling from UNIX source

To compile and install a UNIX executable from a source release x.xx, first execute the
commands:

Chapter 2: Installation 5)

tar -zxf asymptote-x.xx.tar.gz
cd asymptote-x.xx

Then put http://www.hpl.hp.com/personal/Hans_Boehm/gc/gc_source/gc6.7.tar.gz
in the current directory and

./configure
make all
make install

If you get errors from a broken pdftex installation, simply put
http://asymptote.sourceforge.net/asymptote.pdf
in the directory doc and repeat the command make all.

For a (default) system-wide installation, the last command should be done as root. To
install without root privileges:

./configure --prefix=$HOME/asymptote

The above steps will compile an optimized single-threaded static version of the Boehm
garbage collector (http://www.hpl.hp.com/personal/Hans_Boehm/gc/). Alternatively,
one can request use of a (presumably multithreaded and therefore slower) system ver-
sion of the Boehm garbage collector by configuring instead with ./configure --enable-
gc=system. One can disable use of the garbage collector by configuring with ./configure
--disable-gc. For a list of other configuration options, say ./configure --help. For ex-
ample, one can tell configure to look for header files and libraries in nonstandard locations:

./configure CFLAGS=-I/opt/usr/include LDFLAGS=-L/opt/usr/1lib
If you are compiling Asymptote with gcc, you will need a relatively recent version (e.g.

3.2 or later). If you get errors compiling interact.cc, try installing an up-to-date version
of the GNU readline library or else uncomment HAVE_LIBREADLINE in config.h.

The FFTW library is only required if you want Asymptote to be able to take Fourier
transforms of data (say, to compute an audio power spectrum).

If you don’t want to install Asymptote system wide, just make sure the compiled binary
asy and GUI script xasy are in your path and set the configuration variable dir to point
to the directory base (in the top level directory of the Asymptote source code).

2.7 Editing modes

Users of emacs can edit Asymptote code with the mode asy-mode, which is installed and
enabled by default in the Debian package.

Fans of vim can customize vim for Asymptote with

cp @value{Datadir}/doc/asymptote/examples/asy.vim.gz ~/.vim/syntax/asy.vim.gz
gunzip ~/.vim/syntax/asy.vim.gz
and add the following to their ~/.vimrc file:
augroup filetypedetect
au BufNewFile,BufRead *.asy setf asy
augroup END
filetype plugin on
If any of these directories or files don’t exist, just create them. To set vim up to run the
current asymptote script using :make just add to ~/.vim/ftplugin/asy.vim:

http://www.hpl.hp.com/personal/Hans_Boehm/gc/gc_source/gc6.7.tar.gz
http://asymptote.sourceforge.net/asymptote.pdf
http://www.hpl.hp.com/personal/Hans_Boehm/gc/

Chapter 2: Installation 6

setlocal makeprg=asy\ %
setlocal errorformat=yf:\ %1.%c:\ %m

2.8 CVS

The following commands are needed to install the latest development version of Asymptote
from CVS (when prompted for the CVS password, type enter):

cvs -d:pserver:anonymous@cvs.sourceforge.net:/cvsroot/asymptote login

cvs -d:pserver:anonymous@cvs.sourceforge.net:/cvsroot/asymptote co asymptote
cd asymptote-x.xx

./autogen.sh

wget http://www.hpl.hp.com/personal/Hans_Boehm/gc/gc_source/ge6.7.tar.gz
./configure

make all

make install

To compile without optimization, use the command make CFLAGS=-g.

2.9 Uninstall
To uninstall a UNIX binary distribution, type

tar -zxvf asymptote-x.xx.ARCH.tar.gz | xargs rm
texhash

To uninstall all Asymptote files installed from a source distribution, use the command

make uninstall

Chapter 3: Examples 7

3 Examples

To draw a line from coordinate (0,0) to coordinate (100,100) using Asymptote’s interactive
mode, type at the command prompt:

asy
draw((0,0)--(100,100));

The units here are PostScript "big points" (1 bp = 1/72 inch); -- means join with a
linear segment.

At this point you can type in further draw commands, which will be added to the
displayed figure, or type quit to exit interactive mode. You can use the arrow keys in inter-
active mode to edit previous lines (assuming that you have support for the GNU readline
library enabled). Further commands specific to interactive mode are described in Chapter 9
[Interactive mode], page 103.

In batch mode, Asymptote reads commands directly from a file. To try this out, type
draw((0,0)--(100,100));
into a file, say test.asy. Then execute this file by typing the command
asy -V test

MSDOS users can drag and drop the file onto the Desktop asy icon or make Asymptote the
default application for files with the extension asy.

The -V option opens up a PostScript viewer window so you can immediately view the
encapsulated PostScript output. By default the output will be written to the file test . eps;
the prefix of the output file may be changed with the —o command line option.

One can draw a line with more than two points and create a cyclic path like this square:
draw((0,0)--(100,0)--(100,100)--(0,100)--cycle) ;

Chapter 3: Examples 8

It is often inconvenient to work directly with PostScript coordinates. The next example
draws a unit square scaled to width 101 bp and height 101 bp. The output is identical to
that of the previous example.
size(101,101);
draw((0,0)--(1,0)--(1,1)--(0,1)--cycle);

For convenience, the path (0,0)--(1,0)--(1,1)--(0,1)--cycle may be replaced with
the predefined variable unitsquare, or equivalently, box ((0,0),(1,1)).

One can also specify the size in pt (1 pt = 1/72.27 inch), cm, mm, or inches. If 0 is
given as a size argument, no restriction is made in that direction; the overall scaling will be
determined by the other direction (see [size|, page 27):
size(0,3cm);
draw(unitsquare) ;

To make the user coordinates represent multiples of exactly 1cm, fit the picture like this:

draw(unitsquare) ;
shipout (unitsize=1cm);

Adding labels is easy in Asymptote; one specifies the label as a double-quoted LaTeX
string, a coordinate, and an optional alignment direction:

size(0,3cm) ;
draw(unitsquare) ;
label("A", (0,0),SW);
label ("B", (1,0),SE);
label("C",(1,1),NE);
label("D", (0,1) ,NW);

D C

A B

See section Section 7.17 [graph], page 66 (or the online Asymptote gallery at
http://asymptote.sourceforge.net) for further examples, including two-dimensional
scientific graphs.

http://asymptote.sourceforge.net

Chapter 4: Programming 9

4 Programming

Here is a short introductory example to the Asymptote programming language that high-
lights the similarity of its control structures with those of C and C++.

// This is a comment.

// Declaration: Declare x to be a real variable;
real x;

// Assignment: Assign the real variable x the value 1.
x=1.0;

// Conditional: Test if x equals 1 or not.
if(x == 1.0) {

write("x equals 1.0");
} else {

write("x is not equal to 1.0");

}

// Loop: iterate 10 times
for(int i=0; i < 10; ++i) {
write(i);

}

Loops, together with user-defined functions, are illustrated in the files wheel.asy and
cube.asy in the animations subdirectory of the examples directory. These examples use the
gifmerge command to merge multiple images into a gif animation, using the ImageMagick
convert program.

Asymptote also supports while, do, break, and continue statements just as in C/C++.
In addition, it supports many features beyond the ones found in those languages.

4.1 Data types
Asymptote supports the following data types (in addition to user-defined types):
void The void type is used only by functions that take or return no arguments.

bool a boolean type that can only take on the values true and false. For example:
bool b=true;
defines a boolean variable b and initializes it to the value true. If no initializer
is given:
bool b;

the value false is assumed.
int an integer type; if no initializer is given, the implicit value 0 is assumed.

real a real number; this should be set to the highest-precision native floating-point
type on the architecture. The implicit initializer for type real is 0.0.

Chapter 4: Programming 10

pair

complex number, that is, an ordered pair of real components (x,y). The real
and imaginary parts of a pair z can read as z.x and z.y. We say that x and y
are virtual members of the data element pair; they cannot be directly modified,
however. The implicit initializer for type pair is (0.0,0.0).

There are a number of ways to take the complex conjugate of a pair:

pair z=(3,4);
z=(z.%x,-2.y);
z=z.x-I*z.y;
z=conj(z) ;

A number of built-in functions are defined for pairs:

pair conj(pair z)
returns the conjugate of z;

real length(pair z)
returns the complex modulus |z| of its argument z. For example,

pair z=(3,4);
write(length(z));

produces the result 5. A synonym for length(pair) is abs(pair);

real angle(pair z)
returns the angle of z in radians in the interval [-pi,pil;

real degrees(pair z)
returns the angle of z in degrees in the interval [0,360);

real Degrees(pair z)
returns the angle of z in degrees in the interval [0,360), or 0 if
z.x=z.y=0 (rather than producing an error);

pair unit(pair z)
returns a unit vector in the direction of the pair z;

pair expi(real angle)
returns a unit vector in the direction angle measured in radians;

pair dir(real angle)
returns a unit vector in the direction angle measured in degrees;

real xpart(pair z)
returns z.x;

real ypart(pair z)
returns z.y;

real dot(pair z, pair w)
returns the dot product z.x*z.x+z.y*z.y;

pair minbound(pair z, pair w)
returns (min(z.x,w.x),min(z.y,w.y));

pair maxbound(pair z, pair w)
returns (max(z.x,w.x) ,max(z.y,w.y)).

Chapter 4: Programming 11

triple

an ordered triple of real components (x,y,z) used for three-dimensional draw-
ings. The respective components of a triple v can read as v.x, v.y, and v.z.

Here are the built-in functions for triples:

real length(triple v)
returns the length |v| of the wvector v. A synonym for
length(triple) is abs(triple);

real polar(triple v)
returns the colatitude of v measured from the z axis in radians;

real azimuth(triple v)
returns the longitude of v measured from the z axis in radians;

real colatitude(triple v)
returns the colatitude of v measured from the z axis in degrees;

real latitude(triple v)
returns the latitude of v measured from the zy plane in degrees;

real longitude(triple v)
returns the longitude of v measured from the x axis in degrees;

real Longitude(triple v)
returns the longitude of v in degrees, or 0 if v.x=v.y=0 (rather than
producing an error);

triple unit(triple v)
returns a unit triple in the direction of the triple v;

triple expi(real colatitude, real longitude)
returns a unit triple in the direction (colatitude,longitude)
measured in radians;

triple dir(real colatitude, real longitude)
returns a unit triple in the direction (colatitude,longitude)
measured in degrees;

real xpart(triple v)
returns v.x;

real ypart(triple v)
returns v.y;

real zpart(triple v)
returns v.z;

real dot(triple u, triple v)
returns the dot product u.x*v.x+u.y*v.y+u.z*v.z;

triple cross(triple u, triple v)
returns the cross product
(U.y*V.Z2-Uu.2Z*%V.y,U0. Z¥V.X~U.X*V.Z,U.X¥V.J-V.X*U.7);

triple minbound(triple u, triple v)
returns (min(u.x,v.x),min(u.y,v.y) ,min(u.z,v.z));

Chapter 4: Programming 12

string

triple maxbound(triple u, triple v)
returns (max(u.x,v.x),max(u.y,v.y),max(u.z,v.z)).
a character string, implemented using the STL string class.

Strings delimited by double quotes (") are subject to the following mapping to
allow the use of double quotes in TEX (e.g. for using the babel package, see
Section 7.15 [babel], page 65):

e \" mapsto "
Strings delimited by single quotes (’) have the same mappings as character
strings in ANSI C:

e \’ maps to’

e \" maps to "

e \7 maps to ?

e \\ maps to backslash

e \a maps to alert

e \b maps to backspace

e \f maps to form feed

e \n maps to newline

e \r maps to carriage return

e \t maps to tab

e \v maps to vertical tab

e \0-\377 map to corresponding octal byte

o \x0O-\xFF map to corresponding hexadecimal byte

The implicit initializer for type string is the empty string "". In the following
string functions, position 0 denotes the start of the string.

int length(string s)
returns the length of the string s;

int find(string s, string t, int pos=0)
returns the position of the first occurrence of string t in string s at
or after position pos, or -1 if t is not a substring of s;

int rfind(string s, string t, int pos=-1)
returns the position of the last occurrence of string t in string s at
or before position pos (if pos=-1, at the end of the string s), or -1
if t is not a substring of s;

string insert(string s, int pos, string t)
return the string formed by inserting string t at position pos in s;

string erase(string s, int pos, int n)
returns the string formed by erasing the string of length n (if n=-1,
to the end of the string s) at position pos in s;

string substr(string s, int pos, int n=-1)
returns the substring of s starting at position pos and of length n
(if n=-1, until the end of the string s);

Chapter 4: Programming 13

string reverse(string s)
return the string formed by reversing string s;

string replace(string s, string before, string after)
returns a string with all occurrences of the string before in the
string s changed to the string after;

string replace(string s, string[][] table)
returns a string constructed by translating in string s all
occurrences of the string before in an array table of string pairs
{before,after} to the corresponding string after;

string format(string s, int n)
returns a string containing n formatted according to the C-style
format string s;

string format(string s, real x)
returns a string containing x formatted according to the C-style for-
mat string s (see the documentation for the C-function fprintf),
except that only one data field is allowed, trailing zeros are re-
moved by default (unless # is specified) and TEX is used to typeset
scientific notation;

string time(string s)
returns the current time formatted by the ANSI C routine strftime
according to the string s. For example,

write(time("%a %b %d %H:%UM:%S %Z %Y"));
outputs the time in the default format of the UNIX date command.

As in C/C++, complicated types may be abbreviated with typedef (see the example in
Section 4.10 [Functions], page 37).

4.2 Guides and paths

guide

path

an unresolved cubic spline (list of cubic-spline nodes and control points).

This is like a path except the computation of the cubic spline is deferred until
drawing time (when it is resolved into a path); this allows two guides with free
endpoint conditions to be joined together smoothly.

a cubic spline resolved into a fixed path.

A path is specified as a list of pairs or paths interconnected with —-, which
denotes a straight line segment, or .., which denotes a cubic spline. Specifying
a final node cycle creates a cyclic path that connects smoothly back to the
initial node, as in this approximation (accurate to within 0.06%) of a unit
circle:

guide unitcircle=E..N..W..S..cycle;

This example uses the standard compass directions E=(1,0), N=(0,1),
NE=unit (N+E), and ENE=unit (E+NE), etc., which along with the directions up,
down, right, and left are defined as pairs in the Asymptote base module
plain. The routine circle(pair c, real r) constructs a circle of radius r
centered on c by transforming unitcircle:

Chapter 4: Programming 14

guide circle(pair c, real r)
{
return shift(c)*scale(r)*unitcircle;

¥

If high accuracy is needed, a true circle may be produced with this routine,
defined in the module graph.asy:

guide Circle(pair c, real r, int ngraph=400);

Each interior node of a cubic spline may be given a direction prefix or suffix
{dir}: the direction of the pair dir specifies the direction of the incoming or
outgoing tangent, respectively, to the curve at that node. Exterior nodes may
be given direction specifiers only on their interior side. Cubic splines between
a node z, with postcontrol point Z, and a node w, with precontrol point W, are
computed as the Bezier curve

(1—tPz+3t(1—-t)?Z+3*1—t)W+tw 0<t< 1.

A good reference on Bezier curves and the algorithms that Asymptote uses to
determine the control points is Donald Knuth’s monograph, The MetaFontbook,
chapters 3 and 14.

This example draws an approximate quarter circle:

size(100,0);
draw((1,0){up}..{left}(0,1));

A circular arc consistent with the above approximation centered on c with
radius r from anglel to angle2 degrees, drawing counterclockwise if angle?2
>= anglel, can be constructed with

guide arc(pair c, real r, real anglel, real angle2);
If r < 0, the complementary arc of radius |r| is constructed. For convenience,
an arc centered at ¢ from pair z1 to z2 (assuming |z2-c|=|z1-c|) in the
direction CCW (counter-clockwise) or CW (clockwise) may also be constructed
with
guide arc(pair c, explicit pair zl, explicit pair z2,

bool direction=CCW)

If high accuracy is needed, a true arc may be produced with this routine, defined
in the module graph.asy:

Chapter 4: Programming 15

guide Arc(pair c, real r, real anglel, real angle2,

int ngraph=400) ;
Instead of specifying the tangent directions before and after a node, one can
also specify the control points directly:
draw((0,0)..controls (0,100) and (100,100)..(100,0));
One can also change the spline tension from its default value of 1 to any real
value greater than or equal to 0.75:

draw((100,0)..tension 2 ..(100,100)..(0,100));
draw((100,0)..tension 2 and 1 ..(100,100)..(0,100));
draw((100,0)..tension atleast 1 ..(100,100)..(0,100));

The MetaPost ... path connector, which requests, when possible, an inflection-
free curve confined to a triangle defined by the endpoints and directions, is
implemented in Asymptote as the convenient abbreviation :: for ..tension
atleast 1 .. (the ellipsis ... is used in Asymptote to indicate a variable num-
ber of arguments; see Section 4.10.3 [Rest arguments|, page 39). For example,
compare

draw((0,0){up}..(100,25){right}. . (200,0){down});

2

with
draw((0,0){up}::(100,25){right}::(200,0){down});

2

The --- connector is an abbreviation for . .tension atleast infinity.. and
the & connector concatenates two paths which meet at a common point. Here
is an example of all five path connectors:

size(300,0);

pair[] z=new pair[10];

z[0]=(0,100); z[1]1=(50,0); z[2]=(180,0);

for(int n=3; n <= 9; ++n)
z[n]=z[n-3]1+(200,0);

path p=z[0]..z[1]---z[2]::{up}=z[3]
&z[3]..z[4]--z[5] : :{up}z[6]
&z[6]::2[7]1---z[8]..{up}z[9];

draw(p,grey+linewidth(4mm)) ;

Chapter 4: Programming 16

dot(z);

The curl parameter specifies the curvature at the endpoints of a path (0 means
straight; the default value of 1 means approximately circular):

draw((100,0){curl 0}..(100,100)..{curl 0}(0,100));

The implicit initializer for paths and guides is nullpath, which is useful for
building up a path within a loop. A direction specifier given to nullpath
modifies the node on the other side: the paths

a..{uptnullpath..b;
c..nullpath{up}..d;
e..{uptnullpath{down}..f;

are respectively equivalent to

a..nullpath..{up}tb;
c{up}. .nullpath..d;
e{down}. .nullpath..{up}f;

An Asymptote path, being connected, is equivalent to a Postscript subpath.
The =~ binary operator, which requests that the pen be moved (without drawing
or affecting endpoint curvatures) from the final point of the left-hand path to
the initial point of the right-hand path, may be used to group several Asymptote
paths into a path[] array (equivalent to a PostScript path):

size(0,100);

path unitcircle=E..N..W..S..cycle;

path g=scale(2)*unitcircle;
filldraw(unitcircle”"g,evenodd+yellow,black) ;

The PostScript even-odd fill rule here specifies that only the region bounded
between the two unit circles is filled (see [fillrule], page 21). In this example,
the same effect can be achieved by using the default zero winding number fill
rule, if one is careful to alternate the orientation of the paths:

Chapter 4: Programming 17

filldraw(unitcircle”"reverse(g),yellow,black) ;

The =~ operator is used by the box3d function in three.asy to construct a
two-dimensional projection of the edges of a 3D cube, without retracing steps:

import three;
size(0,100);
currentprojection=oblique;

draw(unitcube) ;
dot (unitcube,red);

label("0", (0,0,0) ,NW);

label("(1,0,0)",(1,0,0),E);
label("(0,1,0)",(0,1,0),N);
label("(0,0,1)",(0,0,1),9);

(0,1,0)

(1,0,0)

(0,0,1)

Here are some useful functions for paths:

int length(path);
This is the number of (linear or cubic) segments in the path. If the
path is cyclic, this is the same as the number of nodes in the path.

int size(path);
This is the number of nodes in the path. If the path is cyclic, this
is the same as the path length.

pair point(path p, int n);
If p is cyclic, return the coordinates of node n mod length(p).
Otherwise, return the coordinates of node n, unless n < 0 (in
which case point (0) is returned) or n > length(p) (in which case
point (length(p)) is returned).

pair point(path p, real t);
This returns the coordinates of the point between node floor (t)
and floor(t)+1 corresponding to the cubic spline parameter
t =t-floor(t) (see [Bezier|, page 14). If t lies outside the range
[0,length(p)], it is first reduced modulo length(p) in the case
where p is cyclic or else converted to the corresponding endpoint
of p.

Chapter 4: Programming 18

pair dir(path, int n);
This returns the direction (as a pair) of the tangent to the path at
node n. If the path contains only one point, (0,0) is returned.

pair dir(path, real t);
This returns the direction of the tangent to the path at the point
between node floor(t) and floor(t)+1 corresponding to the cu-
bic spline parameter t =t-floor(t) (see [Bezier|, page 14). If the
path contains only one point, (0,0) is returned.

pair precontrol(path, int n);
This returns the precontrol point of node n.

pair precontrol(path, real t);
This returns the effective precontrol point at parameter t.

pair postcontrol(path, int n);
This returns the postcontrol point of node n.

pair postcontrol(path, real t);
This returns the effective postcontrol point at parameter t.

real arclength(path);
This returns the length (in user coordinates) of the piecewise linear
or cubic curve that the path represents.

real arctime(path, real L);
This returns the path "time", a real number between 0 and the
length of the path in the sense of point(path, real), at which
the cumulative arclength (measured from the beginning of the path)
equals L.

real dirtime(path, pair z);
This returns the first "time", a real number between 0 and the
length of the path in the sense of point(path, real), at which
the tangent to the path has the direction of pair z, or -1 if this
never happens.

path reverse(path p);
returns a path running backwards along p.

path subpath(path p, int n, int m);
returns the subpath running from node n to node m. If n < m, the
direction of the subpath is reversed.

path subpath(path p, real a, real b);
returns the subpath running from path time a to path time b, in the
sense of point (path, real). If a < b, the direction of the subpath
is reversed.

pair intersect(path p, path q, real fuzz=0);
If p and q have at least one intersection point, return a pair of times
representing the respective path times along p and q, in the sense of
point (path, real), for one such intersection point (as chosen by

Chapter 4: Programming 19

the algorithm described on page 137 of The MetaFontbook). Per-
form the computations to the absolute error specified by fuzz, or,
if fuzz is 0, to machine precision. If the paths do not intersect,
return the pair (-1,-1).

pair intersectionpoint(path p, path g, real fuzz=0);
This returns point (p,intersect(p,q,fuzz) .x), the actual point
of intersection.

slice firstcut(path p, path q);
Return the portions of path p before and after the first intersection
of p with path q as a structure slice (if no such intersection exists,
the entire path is considered to be ‘before’ the intersection):
struct slice {
public path before,after;

¥

Note that firstcut.after plays the role of the MetaPost
cutbefore command.

slice lastcut(path p, path q);
Return the portions of path p before and after the last intersection
of p with path q as a slice (if no such intersection exists, the entire
path is considered to be ‘after’ the intersection).

Note that lastcut.before plays the role of the MetaPost
cutafter command.

pair min(path);
returns the pair(left,bottom) for the path bounding box.

pair max(path);
returns the pair(right,top) for the path bounding box.

bool cyclic(path);
returns true iff path is cyclic

bool straight(path, int i);
returns true iff the segment between node i and node i+1 is
straight.

bool inside(path g, pair z, pen p=currentpen) ;
returns true iff the point z is inside the region bounded by the cyclic
path g according to the fillrule of pen p (see [fillrule], page 21).

Finally, we point out an efficiency distinction in the use of guides and paths:
guide g;
for(int i=0; i < 10; ++i)
g=g--(i,1);
path p=g;
runs in linear time, whereas
path p;
for(int i=0; i < 10; ++i)

Chapter 4: Programming 20

p=p——(i,1);
runs in quadratic time, as the entire path up to that point is copied at each step of the
iteration.

4.3 Pens

In Asymptote, pens provide a context for the four basic drawing commands (see Chapter 5
[Drawing commands], page 51). They are used to specify the following drawing attributes:
color, line type, line width, line cap, line join, fill rule, text alignment, font, font size,
pattern, overwrite mode, and calligraphic transforms on the pen nib. The default pen used
by the drawing routines is called currentpen. This provides the same functionality as the
MetaPost command pickup.

Pens may be added together with the binary operator +. This will mix the colors of the
two pens. All other non-default attributes of the rightmost pen will override those of the
leftmost pen. Thus, one can obtain a yellow dashed pen by saying dashed+red+green or
red+greent+dashed or red+dashed+green. The binary operator * can be used to scale the
color of a pen by a real number, until it saturates with one or more color components equal
to 1.

e Colors are specified using one of the following colorspaces:

pen gray(real g)
This produces a grayscale color, where the intensity g lies in the interval
[0,1], with 0.0 denoting black and 1.0 denoting white.

pen rgb(real r, real g, real b)
This produces an RGB color, where each of the red, green, and blue inten-
sities r, g, b, lies in the interval [0,1].

pen cmyk(real ¢, real m, real y, real k)
This produces a CMYK color, where each of the cyan, magenta, yellow,
and black intensities c, m, y, k, lies in the interval [0,1].

pen invisible();
This special pen writes in invisible ink, but adjusts the bounding box as if
something had been drawn (like the \phantom command in TEX).

The default color is black; this may be changed with the routine defaultpen(pen).
A number of named rgb colors are defined in the module plain:

black,gray,white,red,green,blue,yellow,magenta,cyan,brown,darkgreen,
darkblue,orange,purple,chartreuse,fuchsia,salmon,lightblue,lavender,pink,

along with the primitive cmyk colors:
Cyan,Magenta,Yellow,Black.

The function real[] colors(pen) returns the color components of a pen. The func-
tions pen gray(pen), pen rgb(pen), and pen cmyk(pen) return new pens obtained by
converting their arguments to the respective color spaces.

e Line types are specified with the function pen linetype(string s, bool
scale=true), where s is a string of integer or real numbers separated by spaces.
The first number specifies how far (if scale is true, in units of the pen linewidth;

Chapter 4: Programming 21

otherwise in PostScript units) to draw with the pen on, the second number specifies
how far to draw with the pen off, and so on (these spacings are automatically adjusted
by Asymptote to fit the arclength of the path). Here are the predefined line types:

pen solid=linetype("");

pen dotted=linetype("0 4");

pen dashed=linetype("8 8");

pen longdashed=linetype("24 8");

pen dashdotted=linetype("8 8 0 8");

pen longdashdotted=linetype("24 8 0 8");

The default linetype is solid; this may be changed with defaultpen(pen).

e The pen line width is specified in PostScript units with pen linewidth(real). The
default line width is 0.5 bp; this value may be changed with defaultpen(pen). For
convenience, in the module plain we define

static void defaultpen(real w) {defaultpen(linewidth(w));}
static pen operator +(pen p, real w) {return p+linewidth(w);}
static pen operator +(real w, pen p) {return linewidth(w)+p;}

so that one may set the linewidth like this:
defaultpen(2);
pen p=red+0.5;
e A pen with a specific PostScript line cap is returned on calling linecap with an
integer argument:
pen squarecap=linecap(0);
pen roundcap=linecap(1);
pen extendcap=linecap(2);
The default line cap, roundcap, may be changed with defaultpen(pen).

e A pen with a specific PostScript join style is returned on calling linejoin with an
integer argument:
pen miterjoin=linejoin(0);
pen roundjoin=linejoin(1);
pen beveljoin=linejoin(2);
The default join style, roundjoin, may be changed with defaultpen(pen).

e A pen with a specific PostScript fill rule is returned on calling fillrule with an
integer argument:

pen zerowinding=fillrule(0);

pen evenodd=fillrule(1);

pen zerowindingoverlap=fillrule(2);
pen evenoddoverlap=fillrule(3);

Chapter 4: Programming 22

The fill rule, which identifies the algorithm used to determine the insideness of a path or
array of paths, only affects the clip, £i11, and inside functions. For the zerowinding
fill rule, a point z is outside the region bounded by a path if the number of upward
intersections of the path with the horizontal line z--z+infinity minus the number of
downward intersections is zero. For the evenodd fill rule, z is considered to be outside
the region if the total number of such intersections is even. A label is considered to be
inside the region only if all four corners of its (possibly rotated) bounding box are within
the region. The fill rules zerowindingoverlap and evenoddoverlap are respectively
identical to zerowinding and evenodd, except that a label is considered to be inside
the region whenever its center is within the region. While this allows labels to extend
beyond the clipping region, any actual overlap is ignored when determining picture
bounds. The default fill rule, zerowinding, may be changed with defaultpen (pen).

e A pen with a specific text alignment setting is returned on calling basealign with an
integer argument:

pen nobasealign=basealign(0);
pen basealign=basealign(1);
The default setting, nobasealign,which may be changed with defaultpen(pen),
causes the label alignment routines to use the full label bounding box for alignment.
In contrast, basealign requests that the TEX baseline be respected.

e The font size is specified in TEX points (1 pt = 1/72.27 inches) with the function pen
fontsize(real size, real baselineskip=1.2*size). The default font size, 12pt,
may be changed with defaultpen(pen). Nonstandard font sizes may require inserting

import fontsize;

at the beginning of the file. The font size of a pen can be examine with the routine
real fontsize(pen p=currentpen).

e A pen using a specific LaTeX NFSS font is returned by calling the function pen
font(string encoding, string family, string series="m", string shape="n").
The default setting, font ("OT1","cmr","m","n"), corresponds to 12pt Computer
Modern Roman; this may be changed with defaultpen(pen). Support for
standardized international characters is provided by the unicode package (see
Section 7.13 [unicode], page 65).

Alternatively, one may select a fixed-size TeX font (on which fontsize has no effect)
like "cmr12" (12pt Computer Modern Roman) or "pcrr" (Courier) using the function
pen font (string name). An optional size argument can also be given to scale the font
to the requested size: pen font (string name, real size).

A nonstandard font command can be generated with pen fontcommand (string).
A convenient interface to the following standard PostScript fonts is also provided:

pen AvantGarde(string series="m", string shape="n");

pen Bookman(string series="m", string shape="n");

pen Courier(string series="m", string shape="n");

pen Helvetica(string series="m", string shape="n");

pen NewCenturySchoolBook(string series="m", string shape="n");
pen Palatino(string series="m", string shape='"n");

pen TimesRoman(string series="m", string shape="n");

pen ZapfChancery(string series="m", string shape="n");

Chapter 4: Programming 23

pen Symbol(string series="m", string shape="n");
pen ZapfDingbats(string series="m", string shape="n");

e PostScript commands within a picture may be used to create a tiling pattern, iden-
tified by the string name, for £ill and draw operations by adding it to the default
PostScript preamble frame patterns, with optional left-bottom margin 1b and right-
top margin rt.

void add(frame preamble=patterns, string name, picture pic, pair 1b=0,
pair rt=0)

To £ill or draw using pattern name, use the pen pattern("name"). For example,

rectangular tilings can be constructed using the routines picture tile(real

Hx=bmm, real Hy=0, pen p=currentpen, filltype filltype=NoFill), picture

checker (real Hx=bmm, real Hy=0, pen p=currentpen), and picture brick(real

Hx=5mm, real Hy=0, pen p=currentpen) defined in patterns.asy:

size(0,90);
import patterns;

add("tile",tile());
add("filledtilewithmargin",tile(6mm,4mm,red,Fill), (1mm, imm) , (imm, 1mm)) ;
add("checker",checker());

add ("brick" ,brick());

real s=2.5;

filldraw(unitcircle,pattern("tile"));
filldraw(shift(s,0)*unitcircle,pattern("filledtilewithmargin"));
filldraw(shift(2s,0)*unitcircle,pattern("checker"));
filldraw(shift(3s,0)*unitcircle,pattern("brick"));

— T T T

I N

C T T T N
/ [T T T T '\
A T T T T T\
(\ LT T T T 1T T\
T T T T 1T
\ / VT T T T 1T 1)
\C T T 1T 17
\\ \\l\ lllll \‘V

[T T 17

_,/// ~1 [~

Hatch patterns can be generated with the routines picture hatch(real H=5mm,
pair dir=NE, pen p=currentpen), picture crosshatch(real H=bmm, pen
p=currentpen):

size(0,100);
import patterns;

add("hatch" ,hatch());
add ("hatchback" ,hatch (NW)) ;
add("crosshatch",crosshatch(3mm)) ;

Chapter 4: Programming 24

real s=1.25;

filldraw(unitsquare,pattern("hatch"));
filldraw(shift(s,0)*unitsquare,pattern("hatchback"));
filldraw(shift(2s,0)*unitsquare,pattern("crosshatch"));

You may need to turn off aliasing in your PostScript viewer for patterns to ap-
pear correctly. Custom patterns can easily be constructed, following the examples
in pattern.asy. The tiled pattern can even incorporate shading (see [gradient shad-
ing|, page 53), as illustrated in this example (not included in the manual because not
all printers support PostScript 3):

size(0,100);
import patterns;

real d=4mm;

picture tiling;

guide square=scale(d)*unitsquare;
axialshade(tiling,square,white, (0,0),black, (d,d));
fill(tiling,shift(d,d)*square,blue);
add("shadedtiling",tiling);

filldraw(unitcircle,pattern("shadedtiling"));

e One can specify a custom pen nib as an arbitrary polygonal path with pen
makepen(path); this path represents the mark to be drawn for paths containing a
single point. This pen nib path can be recovered from a pen with path nib(pen); the
value nullpath represents a circular pen nib (the default). Unlike in MetaPost, the
path need not be convex:

size(200);

pen convex=makepen(scale(10)*polygon(8))+grey;
draw((1,0.4),convex);
draw((0,0)---(1,1)..(2,0)--cycle,convex) ;

pen nonconvex=scale(10)=*
makepen((0,0)--(0.25,-1)--(0.5,0.25)--(1,0)--(0.5,1.25)--cycle) +red;
draw((0.5,-1.5) ,nonconvex) ;

Chapter 4: Programming 25

draw((0,-1.5)..(1,-0.5)..(2,-1.5) ,nonconvex) ;

¢

e One can prevent labels from overwriting one another by using the pen attribute
overwrite, which takes a single argument:

Allow Allow labels to overwrite one another. This is the default behaviour (unless
overridden with defaultpen(pen).

Suppress Suppress, with a warning, each label that would overwrite another label.

SuppressQuiet
Suppress, without warning, each label that would overwrite another label.

Move Move a label that would overwrite another out of the way and issue a warn-
ing. As this adjustment is during the final output phase (in PostScript
coordinates) it could result in a larger figure than requested.

MoveQuiet
Move a label that would overwrite another out of the way, without warn-
ing. As this adjustment is during the final output phase (in PostScript
coordinates) it could result in a larger figure than requested.

The routine defaultpen () returns the current default pen attributes. Calling the routine
resetdefaultpen() resets all pen default attributes to their initial values.

4.4 Transforms
Asymptote makes extensive use of affine transforms. A pair (x,y) is transformed by the
transform t=(t.x,t.y,t.xx,t.xy,t.yx,t.yy) to (x’,y’), where

x? =t.x+t.xx *xx+txyx*xy
y’ t.y+t.yx xx+ t.yy*xy

Transforms can be applied to pairs, guides, paths, pens, transforms, frames, and pictures
by multiplication (via the binary operator *) on the left (see [circle], page 13 for an example).

Chapter 4: Programming 26

Transforms can be composed with one another and inverted with the function transform
inverse(transform t); they can also be raised to any integer power with the ~ operator.

The built-in transforms are:

transform identity();
the identity transform;

transform shift(pair z) ;
translates by the pair z;

transform xscale(real x);
scales by x in the z direction;

transform yscale(real y);
scales by y in the y direction;

transform scale(real s);
scale by s in both x and y directions;

transform slant(real s);
maps (x,y) —> (x+s*y,y);

transform rotate(real angle, pair z=(0,0));
rotates by angle in degrees about z;

transform reflect(pair a, pair b);
reflects about the line a--b.

The implicit initializer for transforms is identity ().

4.5 Frames and pictures

frame Frames are canvases for drawing in PostScript coordinates. While working
with frames directly is occasionally necessary for constructing deferred draw-
ing routines, pictures are usually more convenient to work with. The implicit
initializer for frames is newframe. The function bool empty(frame f) returns
true only if the frame f is empty. The functions min(frame f) and max(frame
£) return the (left,bottom) and (right,top) coordinates of the frame bounding
box, respectively. The contents of frame src may be appended to frame dest
with the command

void add(frame dest, frame src);
or prepended with
void prepend(frame dest, frame src);

A frame obtained by aligning frame f in the direction dir, in a manner anal-
ogous to the align argument of label (see Section 5.4 [label], page 54), is
returned by

frame align(frame f, pair dir);

picture Pictures are high-level structures (see Section 4.7 [Structures|, page 32) defined
in the module plain that provide canvases for drawing in user coordinates. The
default picture is called currentpicture. A new picture can be created like
this:

Chapter 4: Programming 27

picture pic;

Anonymous pictures can be made by the expression new picture.

The size routine specifies the dimensions of the desired picture:

void size(picture pic=currentpicture, real x, real vy,
bool keepAspect=Aspect);

If the x and y sizes are both 0, user coordinates will be interpreted as
PostScript coordinates. In this case, the transform mapping pic to the final
output frame is identity Q).

If exactly one of x or y is 0, no size restriction is imposed in that direction; it
will be scaled the same as the other direction.

If keepAspect is set to Aspect or true, the picture will be scaled with its aspect
ratio preserved such that the final width is no more than x and the final height
is no more than y.

If keepAspect is set to IgnoreAspect or false, the picture will be scaled in
both directions so that the final width is x and the height is y.
To ensure that each dimension is no more than size, use the routine
void size(picture pic=currentpicture, real size,

bool keepAspect=Aspect);
A picture can be fit to a frame and converted into a PostScript image by
calling the function shipout:

void shipout(string prefix=defaultfilename, picture pic,
real unitsize=0, frame preamble=patterns,
orientation orientation=Portrait,
string format="", bool wait=NoWait, bool quiet=false);
void shipout(string prefix=defaultfilename, real unitsize=0,
orientation orientation=Portrait,
string format="", bool wait=NoWait, bool quiet=false);

A shipout() command is added implicitly at file exit if no previous shipout
commands have been executed.

A picture pic can be explicitly fit to a frame by calling

frame pic.fit(real xsize=pic.xsize, real ysize=pic.ysize,
bool keepAspect=pic.keepAspect);

The default size and aspect ratio settings are those given to the size command
(which default to 0, 0, and true, respectively).

The default page orientation is Portrait. To output in landscape mode, simply
replace the call to shipout () with:

shipout (Landscape) ;
To rotate in the other direction, replace Landscape with Seascape.

To draw a bounding box with margins around a picture, fit the picture to a
frame using the function

frame bbox(picture pic=currentpicture, real xmargin=0,
real ymargin=xmargin, pen p=currentpen,

Chapter 4: Programming 28

filltype filltype=NoFill);
Here £illtype specifies one of the following fill types:

Fill Fill with the pen used to draw the boundary.

Fill(pen p=nullpen)
If p is nullpen, fill with the pen used to draw the boundary; oth-
erwise fill with pen p.

NoFill Do not fill; draw only the boundary.
UnFill Clip the region.
UnFill Clip the region and surrounding margins xmargin and ymargin.

RadialShade
Fill varying radially from penc at the center of the bounding box
to penr at the edge.

For example, to draw a bounding box around a picture with a 0.25 cm margin
and output the resulting frame, use the command:

shipout (bbox (0.25cm)) ;

A picture may be fit to a frame with the background color of pen p with the
function bbox (p,Fill).

The function

pair point(picture pic=currentpicture, pair dir);

is a convenient way of determining the point on the boundary of the user-
coordinate bounding box of pic in the direction dir relative to its center.

The member functions pic.min() and pic.max() calculate the PostScript
bounds that picture pic would have if it were currently fit to a frame using its
default size specification.

Sometimes it is useful to draw objects on separate pictures and add one picture
to another using the add function:

void add(picture src, bool group=true,
filltype filltype=NoFill, bool put=Above) ;
void add(picture dest, picture src, bool group=true,
filltype filltype=NoFill, bool put=Above);

The first example adds src to currentpicture; the second one adds src to
dest. The group option specifies whether or not the graphical user interface
xasy should treat all of the elements of src as a single entity (see Chapter 10
[GUI], page 104), £filltype requests optional background filling or clipping,
and put specifies whether to add src above or below existing objects.

There are also routines to add a picture or frame src specified in postscript
coordinates to another picture about the user coordinate origin:

void add(pair origin, picture dest, picture src, bool group=true,
filltype filltype=NoFill, bool put=Above);

void add(pair origin, picture src, bool group=true,
filltype filltype=NoFill, bool put=Above);

Chapter 4: Programming 29

void add(pair origin=0, picture dest=currentpicture, frame src,
bool group=true, filltype filltype=NoFill,
bool put=Above);

void add(pair origin=0, picture dest=currentpicture, frame src,
pair dir, bool group=true, filltype filltype=NoFill,
bool put=Above);

The dir argument in the last form specifies a direction to use for aligning the
frame, in a manner analogous to the align argument of label (see Section 5.4
[label], page 54). Illustrations of frame alignment can be found in the examples
[errorbars], page 74 and [image|, page 87. If you want to align 3 or more
subpictures, group them two at a time:

picture picil;

real size=50;

size(picl,size);
fill(pic1,(0,0)--(50,100)--(100,0)--cycle,red);

picture pic2;
size(pic2,size);
f£ill(pic2,unitcircle,green);

picture pic3;
size(pic3,size);
£i1l1(pic3,unitsquare,blue);

picture pic;
add(pic,picl.fit(),N);
add(pic,pic2.fit(),108);

add(pic.fit(),N);
add(pic3.£fit(),108);

Chapter 4: Programming 30

Alternatively, one can use attach to automatically increase the size of picture
dest to accommodate adding a frame src about the user coordinate origin:

void attach(pair origin=0, picture dest=currentpicture,
frame src, bool group=true,
filltype filltype=NoFill, bool put=Above);
void attach(pair origin=0, picture dest=currentpicture, frame src,
pair dir, bool group=true, filltype filltype=NoFill,
bool put=Above) ;
To draw or fill a box or ellipse around a label, frame, or picture, use one of the
routines (the first two routines for convenience also return the boundary as a
guide):
guide box(frame f, Label L="", real xmargin=0,
real ymargin=xmargin, pen p=currentpen,
filltype filltype=NoFill, bool put=Above);
guide ellipse(frame f, Label L="", real xmargin=0,
real ymargin=xmargin, pen p=currentpen,
filltype filltype=NoFill, bool put=Above) ;
void box(picture pic=currentpicture, Label L,
real xmargin=0, real ymargin=xmargin, pen p=currentpen,
filltype filltype=NoFill, bool put=Above);
To erase the contents of a picture (but not the size specification), use the
function

void erase(picture pic=currentpicture);

To save a snapshot of currentpicture, currentpen, and currentprojection,
use the function save().

To restore a snapshot of currentpicture, currentpen, and
currentprojection, use the function restore().

Many further examples of picture and frame operations are provided in the base
module plain.

It is possible to insert verbatim PostScript commands in a picture with the
routine

void postscript(picture pic=currentpicture, string s);

Verbatim TEX commands can be inserted in the intermediate LaTeX output file
with the function

void tex(picture pic=currentpicture, string s);

To issue a global TEX command (such as a TEX macro definition) in the TEX
preamble (valid for the remainder of the top-level module) use:

void texpreamble(string s);

4.6 Files

Asymptote can read and write text files (including comma-separated value) files and
portable XDR (External Data Representation) binary files.

An input file must first be opened with input (string name, bool check=true, string
commentchar="#"); reading is then done by assignment:

Chapter 4: Programming 31

file fin=input("test.txt");
real a=fin;

If the optional boolean argument check is false, no check will be made that the file
exists. If the file does not exist or is not readable, the function bool error(file) will
return true. The first character of the string commentchar specifies a comment character.
If this character is encountered in a data file, the remainder of the line is ignored. When
reading strings, the comment character must be in the first column (otherwise it will be
treated as an ordinary character).

One can change the current working directory with the string cd(string) function,
which returns the new working directory.

When reading pairs, the enclosing parenthesis are optional. Strings are also read by
assignment, by reading characters up to but not including a newline. In addition, Asymptote
provides the function string getc(file) to read the next character only, returning it as
a string.

A file named name can be open for output with
file output(string name, bool append=false);

data will be appended to an existing file only if the file is opened with append=true. Data
of a built-in type T can be written to an output file by calling one of the functions

write(string s="", T x, suffix e=endl ... T[]);
write(file fout, string s="", T x, suffix e=none ... T[]);
write(file fout=stdout, string s="", explicit T[] x ... T[[1);

write(file fout=stdout, T[][]);
write(file fout=stdout, T[I1[1[1);
write(file fout=stdout, suffix e=endl);

If the fout is not specified, stdout is used and terminated with a newline. If specified,
the optional identifying string s is written before the data x. An arbitrary number of data
values may be listed when writing scalars or one-dimensional arrays. The suffix e may be
one of the following: none (do nothing), endl (terminate with a newline), or tab (terminate
with a tab). Here is a simple example of data output:

file fout=output("test.txt");

write(fout,1); // Writes "1"
write(fout); // Writes a new line
write(fout,"List: ",1,2,3); // Writes "List: 1 2 3"

There are two special files: stdin, which reads from the keyboard, and stdout, which
writes to the terminal.

A file may also be opened with xinput or xoutput instead of input or output, in
which case it will read or write double precision values written in Sun Microsystem’s XDR
(External Data Representation) portable binary format (available on all UNIX platforms).
The function file single(file) sets the file to read single precision XDR values; calling
file single(file,false) sets it back to read doubles again. The default initializer for
file is stdout.

One can test a file for end-of-file with the boolean function eof (file), end-of-line
with eol(file), and for I/O errors with error(file). One can flush the output buffers
with flush(file), clear a previous I/O error with clear(file), and close the file with

Chapter 4: Programming 32

close(file). To set the number of digits of output precision, use precision(file,int).
The function int tell(file) returns the current position in an input file relative to the
beginning. The function seek(file, int) can be used to change this position; for example,
to rewind a file, use the command seek(file,0).

The routines

string getstring(string name="", string default="", string prompt="",
bool save=true);
int getint(string name="", int default=0, string prompt="",
bool save=true);
real getreal(string name="", real default=0, string prompt="",
bool save=true);
pair getpair(string name="", pair default=0, string prompt="",

bool save=true)

defined in the module plain may be used to prompt for a value from stdin using the
GNU readline library. If save=true, the history of values for name is saved to the file
".asy_"+name (see |[history|, page 103). The most recent value in the history will be used
to provide a default value for subsequent runs. The default value (initially default) is
displayed after prompt. These routines are based on the following interface to readline,
which prompts the user with the default value formatted according to prompt and saves
the local history under the name ".asy_"+history, unless the string history begins with
a linefeed (’\n’):

string readline(string prompt="", string history="", string initial="",

bool tabcompletion=false);

4.7 Structures

Users may also define their own data types as structures, along with user-defined operators,
much as in C++. By default, structure members are read-only when referenced outside
the structure, but may be optionally declared public (read-write) or private (read and
write allowed only inside the structure). The virtual structure this refers to the enclosing
structure. Any code at the top-level scope within the structure is executed on initialization.

A default initializer for a structure S can be defined by creating a function S operator
init (). This can be used to initialize each instance of S with new S (which creates a new
anonymous instance of S).

struct S {
public real a=1;
real f(real a) {return a+this.a;}
}
S operator init() {return new S;}
S s; // Initializes s with S operator init();

write(s.f(2)); // Outputs 3

S operator + (S s1, S s2)

Chapter 4: Programming 33

S result;
result.a=sl.a+s2.a;
return result;

}

write((s+s).f(0)); // Outputs 2

In the following example, the static function T.T(real x) is a constructor that initializes
and returns a new instance of T:

struct T {

real x;

static T T(real x) {T t=new T; t.x=x; return t;}
}

T operator init() {return new T;}

T a;

T b=T.T(1);

write(a.x); // Outputs 0
write(b.x); // Outputs 1

The name of the constructor need not be identical to the name of the structure; for example,
see triangle.SAS in geometry.asy.

Structure assignment does a shallow copy; a deep copy requires writing an explicit copy ()
member. The function bool alias(T,T) checks to see if two instances of the structure T
are identical. The boolean operators == and !'= are by default equivalent to alias and
lalias respectively, but may be overwritten for a particular type do a deep comparison.

When a is defined both as a variable and a type, the qualified name a.b refers to the
variable instead of the type.

Much like in C++, casting (see Section 4.12 [Casts|, page 45) provides for an elegant
implementation of structure inheritance, including virtual functions:

struct parent {
real x=1;
public void virtual(int) {write (0);}
void f() {virtual(l);}

}

parent operator init() {return new parent;}
void write(parent p) {write(p.x);}
struct child {

parent parent;
real y=2;

Chapter 4: Programming 34

void virtual(int x) {write (x);}
parent.virtual=virtual;
void f()=parent.f;

}

parent operator cast(child child) {return child.parent;}

child operator init() {return new child;}

parent p;

child c;

write(c); // Outputs 1;
p.£0O; // Outputs 0;
c.fTQ); // Outputs 1;
write(c.parent.x); // Outputs 1;
write(c.y); // Outputs 2;

Further examples of structures are Legend and picture in the Asymptote base module
plain.

4.8 Operators

4.8.1 Arithmetic & logical operators

Asymptote uses the standard binary arithmetic operators. However, when one integer is
divided by another, both arguments are converted to real values before dividing and a real
quotient is returned (since this is usually what is intended). The function int quotient (int
X, int y) returns the greatest integer less than or equal to x/y. In all other cases both
operands are promoted to the same type, which will also be the type of the result:

+ addition

- subtraction

* multiplication

/ division

% modulo; the result always has the same sign as the divisor. In particular, this

makes gxquotient (p,q)+p%q == p for all integers p and nonzero integers g.

power; if the exponent (second argument) is an int, recursive multiplication is
used; otherwise, logarithms and exponentials are used. ** is a synonym for ~

The usual boolean operators are also defined:
== equals
= not equals

< less than

Chapter 4: Programming 35

<= less than or equals

>= greater than or equals
> greater than

&& and

I or

- Xor

! not

Asymptote also supports the C-like conditional syntax:

bool positive=(pi >= 0) ? true : false;

4.8.2 Self & prefix operators

As in C, each of the arithmetic operators +, -, *, /, %, and ~ can be used as a self operator.
The prefix operators ++ (increment by one) and -- (decrement by one) are also defined.
For example,

int i=1;

i+= 2;

int j=++i;

is equivalent to the code

int i=1;

i=i+2;

int j=i=i+1;

However, postfix operators like i++ and i-- are not defined (because of the inherent
ambiguities that would arise with the -- path-joining operator). In the rare instances where
i++ and i-- are really needed, one can substitute the expressions (++i-1) and (--i+1),
respectively.

4.8.3 User-defined operators

The following symbols may be used with operator to define or redefine operators on struc-
tures and built-in types:
—tx /T N> == =K== &k || 77 L i o oo
<< >> § $$ @ Q0
The operators on the second line have precedence one higher than the boolean operators <,
> <=, and >=.

Guide operators like .. may be overloaded, say, to write a user function that produces
a new guide from a given guide:

guide dots(...guide[] g)=operator ..;

guide operator ..(...guidel[] g) {
guide G;
if(g.length > 0) {
write(g[0]);

Chapter 4: Programming

G=g[0];
}

for(int i=1; i < g.length; ++i) {

write(gl[il);
write();
G=dots(G,gl[i]);
}
return G;

b

guide g=(0,0){up}..{SW}(100,100){NE}..{curl 3}(50,50)..(10,10);

write("g=",none);
write(g);

4.9 Implicit scaling

36

If a numeric literal is in front of certain types of expressions, then the two are multiplied:

int x=2;
real y=2.0;
real cm=72/2.540005;

write(3x);
write(2.5%);
write(3y);
write(-1.602e-19 y);
write(0.5(x,y));
write(2x°2);
write(3x+2y);
write(3(x+2y));
write(3sin(x));
write(3(sin(x))"2);
write(10cm);

This produces the output
6
5
6
-3.204e-19
(1,1)
16
10
18
2.72789228047704

7.44139629388625
283.464008929116

Chapter 4: Programming 37

4.10 Functions

Asymptote functions are treated as variables with a signature (non-function variables have
null signatures). Variables with the same name are allowed, so long as they have distinct
signatures.

Functions arguments are passed by value. To pass an argument by reference, simply
enclose it in a structure (see Section 4.7 [Structures|, page 32).

Here are some examples of Asymptote functions:
1. Two distinct variables:

int x, xO;

x=5;
x=new int() {return 17;};
x=x(); // calls x() and puts the result, 17, in the scalar x

2. Traditional function definitions are allowed:

int sqr(int x)
{

return x*x;

¥

sqr=null; // but the function is still just a variable.
3. Casting can be used to resolve ambiguities:

int a, a(), b, b(); // Valid: creates four variables.

a=b; // Invalid: assignment is ambiguous.

a=(int) b; // Valid: resolves ambiguity.

(int) (a=b); // Valid: resolves ambiguity.

(int) a=b; // Invalid: cast expressions cannot be L-values.
int cQ);

c=a; // Valid: only one possible assignment.

4. Anonymous (so-called "high-order") functions are also allowed:

typedef int intop(int);
intop adder(int m)
{
return new int(int n) {return m+n;};
}
intop addby7=adder(7);
write(addby7(1)); // Writes 8.
5. Anonymous functions can be used to redefine a function variable that has been declared
(and implicitly initialized to the null function) but not yet explicitly defined:

void f(bool b);

void g(bool b) {
if(b) £(b);
else write(b);

}

Chapter 4: Programming 38

f=new void(bool b) {
write(b);
g(false);
};

g(true);

Asymptote is the only language we know of that treats functions as variables, but allows
overloading by distinguishing variables based on their signatures.

Functions are allowed to call themselves recursively. As in C++, infinite nested recursion
will generate a stack overflow (reported as a segmentation fault, unless the GNU library
libsigsegv is installed at configuration time).

4.10.1 Default arguments

Asymptote supports a more flexible mechanism for default function arguments than C++:
they may appear anywhere in the function prototype. Because certain data types are
implicitly cast to more sophisticated types (see Section 4.12 [Casts], page 45) one can
often avoid ambiguities by ordering function arguments from the simplest to the most
complicated. For example, given

real f(int a=1, real b=0) {return a+b;}
then £ (1) returns 1.0, but £(1.0) returns 2.0.

The value of a default argument is determined by evaluating the given Asymptote ex-
pression in the scope where the called function is defined.

4.10.2 Named arguments

It is sometimes difficult to remember the order in which arguments appear in a function
declaration. Named (keyword) arguments make calling functions with multiple arguments
easier. Unlike in the C and C++ languages, an assignment in a function argument is inter-
preted as an assignment to a parameter of the same name in the function signature, not
within the local scope. The command-line option -d may be used to check Asymptote code
for cases where a named argument may be mistaken for a local assignment.

When matching arguments to signatures, first all of the keywords are matched, then
the arguments without names are matched against the unmatched formals as usual. For
example,
int f(int x, int y) {

return 10x+y;

}
write(f(4,x=3));

output 34, as x is already matched when we try to match the unnamed argument 4, so it
gets matched to the next item, y.

For the rare occasions where it is desirable to assign a value to local variable within a
function argument (generally not a good programming practice), simply enclose the assign-
ment in parentheses. For example, given the definition of f in the previous example,
int x;
write(f (4, (x=3)));

Chapter 4: Programming 39

is equivalent to the statements
int x;

x=3;

write(f(4,3));

and outputs 43.

As a technical detail, we point out that, since variables of the same name but different
signatures are allowed in the same scope, the code

int f(int x, int x()) {
return x+x();
}

int seven() {return 7;}

is legal in Asymptote, with f£(2,seven) returning 9. A named argument matches the
first unmatched formal of the same name, so f(x=2,x=seven) is an equivalent call, but
f (x=seven,2) is not, as the first argument is matched to the first formal, and int ()
cannot be implicitly cast to int. Default arguments do not affect which formal a named
argument is matched to, so if £ were defined as

int f(int x=3, int x(0)) {

return x+x();

¥

then f (x=seven) would be illegal, even though f (seven) obviously would be allowed.

4.10.3 Rest arguments
Rest arguments allow one to write functions that take a variable number of arguments:

// This function sums its arguments.
int sum(... int[] nums) {
int total=0;
for (int i=0; i < nums.length; ++i)
total += numsl[i];
return total;

}
sum(1,2,3,4); // returns 10
sum() ; // returns O

// This function subtracts subsequent arguments from the first.

int subtract(int start ... int[] subs) {
for (int i=0; i < subs.length; ++i)
start -= subs[i];
return start;
}
subtract(10,1,2); // returns 7
subtract (10) ; // returns 10

subtract(); // illegal

Chapter 4: Programming 40

Putting an argument into a rest array is called packing. One can give an explicit list of
arguments for the rest argument, so subtract could alternatively be implemented as
int subtract(int start ... int[] subs) {

return start - sum(... subs);

¥

One can even combine normal arguments with rest arguments:
sum(1,2,3 ... new int[] {4,5,6}); // returns 21

This builds a new six-element array that is passed to sum as nums. The opposite operation,
unpacking, is not allowed:

subtract(... new int[] {10, 1, 2});
is illegal, as the start formal is not matched.

If no arguments are packed, then a zero-length array (as opposed to null) is bound to
the rest parameter. Note that default arguments are ignored for rest formals and the rest
argument is not bound to a keyword.

The overloading resolution in Asymptote is similar to the function matching rules used
in C++. Every argument match is given a score. Exact matches score better than matches
with casting, and matches with formals (regardless of casting) score better than packing an
argument into the rest array. A candidate is maximal if all of the arguments score as well
in it as with any other candidate. If there is one unique maximal candidate, it is chosen;
otherwise, there is an ambiguity error.
int f(path g);
int f(guide g);
£((0,0)--(100,100)); // matches the second; the argument is a guide

int g(int x, real y);
int g(real x, int x);

g(3,4); // ambiguous; the first candidate is better for the first argument,
// but the second candidate is better for the second argument

int h(... int[] rest);
int h(real x ... int[] rest);

h(1,2); // the second definition matches, even though there is a cast,
// because casting is preferred over packing

int i(int x ... int[] rest);
int i(real x, real y ... int[] rest);

i(3,4); // ambiguous; the first candidate is better for the first argument,
// but the second candidate is better for the second one

4.10.4 Mathematical functions

Asymptote has built-in versions of the standard 1libm mathematical real(real) functions
sin, cos, tan, asin, acos, atan, exp, log, powl0, 1logl0, sinh, cosh, tanh, asinh, acosh,

Chapter 4: Programming 41

atanh, sqrt, cbrt, fabs, as well as the identity function identity. Asymptote also defines
the order n Bessel functions of the first kind J(int n, real) and second kind Y(int n,
real), as well as the gamma function gamma, the error function erf, and the complementary
error function erfc. The standard real(real, real) functions atan2, hypot, fmod, remainder
are also included.

For convenience, the module math.asy defines variants Sin, Cos, Tan, aSin, aCos, and
aTan of the standard trigonometric functions using degrees rather than radians.

The functions floor, ceil, and round differ from their usual definitions in that they
all return an int value rather than a real (since that is normally what one wants). The
functions Floor, Ceil, and Round are respectively similar, except that if the result cannot
be converted to a valid int, they return intMax for positive arguments and -intMax for
negative arguments, rather than generating an integer overflow. We also define a function
sgn, which returns the sign of its real argument as an integer (-1, 0, or 1).

There is an abs(int) function, as well as an abs(real) function (equivalent to
fabs(real)) and an abs(pair) function (equivalent to length(pair)).

Random numbers can be seeded with srand(int) and generated with the int rand ()
function, which returns a random integer between 0 and the integer randMax. A Gaus-
sian random number generator Gaussrand and a collection of statistics routines, including
histogram, are provided in the base file stats.asy.

4.11 Arrays

Appending [] to a built-in or user-defined type yields an array. The array element i of
an array A can be accessed as A[i]. By default, attempts to access or assign to an array
element using a negative index generates an error. Reading an array element with an index
beyond the length of the array also generates an error; however, assignment to an element
beyond the length of the array causes the array to be resized to accommodate the new
element. One can also index an array A with an integer array B: the array A[B] is formed
by indexing array A with successive elements of array B.

The declaration
reall] A;
initializes A to be an empty (zero-length) array. Empty arrays should be distinguished from
null arrays. If we say
real[] A=null;
then A cannot be dereferenced at all (null arrays have no length and cannot be read from
or assigned to).

Arrays can be explicitly initialized like this:
real[] A={0,1,2};

Array assignment in Asymptote does a shallow copy: only the pointer is copied (if one
copy if modified, the other will be too). The copy function listed below provides a deep
copy of an array.

Every array A of type T[] has the virtual members int length, void cyclic(bool b),
bool cyclicflag, T push(T x), void append(T[] a), and T pop(). The member A.length
evaluates to the length of the array. Setting A.cyclic(true) signifies that array in-
dices should be reduced modulo the current array length. Reading from or writing to a

Chapter 4: Programming 42

nonempty cyclic array never leads to out-of-bounds errors or array resizing. The member
A.cyclicflag returns the current setting of the cyclic flag. The functions A.push and
A.append append their arguments onto the end of the array (for convenience A.push also
returns its argument), while A.pop () pops and returns the last element. Like all Asymptote
functions, cyclic, push, pop, and append can be "pulled off" of the array and used on their
own. For example,

int[]1 A={1};

A.push(2); // A now contains {1,2}.
A.append(A); // A now contains {1,2,1,2}.
int f(int)=A.push;

£(3); // A now contains {1,2,1,2,3%}.
int g()=A.pop;

write(g()); // Outputs 3.

The [] suffix can also appear after the variable name; this is sometimes convenient for
declaring a list of variables and arrays of the same type:
real a,A[];

This declares a to be real and implicitly declares A to be of type real[]. But beware
that this alternative syntax currently does not construct certain internal type-dependent
functions that take real[] as an argument: alias, copy, concat, sequence, map, and
transpose for type real[] won’t be defined until the type real[] is explicitly used.

In the following list of built-in array functions, T represents a generic type.
new T[] returns a new empty array of type T[];

new T[] {list}
returns a new array of type T[] initialized with 1ist (a comma delimited list
of elements).

new T[n] returns a new array of n elements of type T[]. Unless they are arrays themselves,
these n array elements are not initialized.

int[] sequence(int n)
if n >= 1 returns the array {0,1,...,n-1} (otherwise returns a null array);

int[] sequence(int n, int m)
if m >= n returns an array {n,n+1,...,m} (otherwise returns a null array);

T[] sequence(T f(int) ,n)
if n >= 1 returns the sequence {f_i :i=0,1,...n-1} given a function T f (int)
and integer int n (otherwise returns a null array);

int[] reverse(int n)
if n >= 1 returns the array {n-1,n-2,...,0} (otherwise returns a null array);

int[] complement(int[] a, int n)
returns the complement of the integer array a in {1,2,...,n}, so that
b[complement(a,b.length)] yields the complement of b[a].

int find(bool[], int n=1)
returns the index of the nth true value or -1 if not found. If n is negative,
search backwards from the end of the array for the -nth value;

Chapter 4: Programming 43

int search(T[] a, T key)
For built-in ordered types T, searches a sorted ordered array a of n elements to
find an interval containing key, returning -1 if key is less than the first element,
n-1 if key is greater than or equal to the last element, and otherwise the index
corresponding to the left-hand (smaller) endpoint.

T[] copy (T[] a)

returns a deep copy of the array a;
T[] concat(T[] a, T[] b)

returns a new array formed by concatenating arrays a and b;
bool alias(T[] a, T[] b)

returns true if the arrays a and b are identical;

T[] sort(T[] a)
For built-in ordered types T, returns a copy of a sorted in ascending order;

T [sort(TII[] &)
For built-in ordered types T, returns a copy of a with the rows sorted by the
first column, breaking ties with successively higher columns. For example:
String [] [] a={{llbob|| s llgll} s {||a1ice|| s ||5ll} s {Ilpete" s ||7l|} s
{"alice","4"}};
// Row sort (by column O, using column 1 to break ties):
write(stdout,sort(a));

produces

alice 4
alice 5
bob 9
pete 7

T[] [] transpose(T[][] a)
returns the transpose of a.
T sum(T[] a)
For arithmetic types T, returns the sum of a.
Tmin(T[] a)
Tmin(T[]1[] a)
Tmin(TLI[I[] &)
For built-in ordered types T, returns the minimum element of a.
T max (T[] a)
T max(T[I[] a)
Tmax(TLILI[] a)

For built-in ordered types T, returns the maximum element of a.

map (£ (T), T[] a)
returns the array obtained by applying the function f to each element of the
array a.

T[] min(T[] a, T[] b)
For built-in ordered types T, and arrays a and b of the same length, returns an
array composed of the minimum of the corresponding elements of a and b.

Chapter 4: Programming 44

T[] max(T[] a, T[] b)
For built-in ordered types T, and arrays a and b of the same length, returns an
array composed of the maximum of the corresponding elements of a and b.

pair[] fft(pair[] a, int sign=1)
returns the Fast Fourier Transform of a (if the optional FFTW package is in-
stalled), using the given sign. Here is a simple example:
int n=4;
pair[] f=sequence(n);
write(f);
pair[] g=fft(f,-1);
write();
write(g);
f=fft(g,1);
write();
write(£f/n);

real[] tridiagonal(reall] a, reall[] b, reall] c, reall] f);
Solve the periodic tridiagonal problem L' f, where f is an n vector and L is
the n x n matrix

[b[0] c[0] al0]]
[al1] bl1] c[1]]
[al2] bl[2] c[2]]
[.]
[c[n-1] aln-1] b[n-1] 1]

For Dirichlet boundary conditions (denoted here by u[-1] and ulnl), replace
£[0] by £[0]-al[0]ul[-1] and f[n-1]1-c[n-1Juln]; then set a[0]=c[n-1]1=0.

real[] quadraticroots(real a, real b, real c);
This numerically robust solver returns the real roots of the quadratic equation
ax”2+bx+c=0.

real[] cubicroots(real a, real b, real c, real d);
This numerically robust solver returns the real roots of the cubic equation
ax”3+bx"2+cx+d=0.

Asymptote includes a full set of vectorized array instructions for arithmetic (including
self) and logical operations. These element-by-element instructions are implemented in C++
code for speed. Given
real[] a={1,2};
real[] b={3,2};
then a == b and a >= 2 both evaluate to the vector {false, true}. To test whether all
components of a and b agree, use the boolean function all(a ==b). One can also use
conditionals like (a >=2) 7 a : b, which returns the array {3,2}, or write((a >=2) ? a :
null, which returns the array {2}.

All of the standard built-in 1ibm functions of signature real (real) also take a real array
as an argument, effectively like an implicit call to map.

As with other built-in types, arrays of the basic data types can be read in by assignment.
In this example, the code

Chapter 4: Programming 45

file fin=input("test.txt");
real[] A=fin;

reads real values into A until the end of file is reached (or an I/O error occurs). If line mode
is set with line(file), then reading will stop once the end of the line is reached instead
(line mode may be cleared with line(file,false)):

file fin=input("test.txt");
real[] A=line(fin);

Another useful mode is comma-separated-value mode, set with csv(file) and cleared
with csv(file,false), which skips over any comma delimiters:

file fin=input("test.txt");
real[] A=csv(fin);

To restrict the number of values read, use the dimension(file,int) function:

file fin=input("test.txt");
real[] A=dimension(fin,10);

This reads 10 values into A, unless end-of-file (or end-of-line in line mode) occurs first.
Attempting to read beyond the end of the file will produce a runtime error message. Speci-
fying a value of 0 for the integer limit is equivalent to the previous example of reading until
end-of-file (or end-of-line in line mode) is encountered.

Two- and three-dimensional arrays of the basic data types can be read in like this:

file fin=input("test.txt");
real[][] A=dimension(fin,2,3);
real[] []J][] B=dimension(fin,2,3,4);

Again, an integer limit of zero means no restriction.

Sometimes the array dimensions are stored with the data as integer fields at the beginning
of an array. Such arrays can be read in with the functions readl, read2, and read3,
respectively:

file fin=input("test.txt");
real[] A=readl(fin);
real[][] B=read2(fin);
real[][][] C=read3(fin);

One, two, and three-dimensional arrays of the basic data types can be output with
the functions write(file,T[]), write(file, T[] [1), write(file, T[] [1[]), respectively.
The command scroll(int n) is useful for pausing the output after every n output lines
(press Enter to continue).

4.12 Casts

Asymptote implicitly casts int to real, int to pair, real to pair, pair to path, pair to
guide, path to guide, guide to path, and real to pen. Implicit casts are also automatically
attempted when trying to match function calls with possible function signatures. Implicit
casting can be inhibited by declaring individual arguments explicit in the function sig-
nature, say to avoid an ambiguous function call in the following example, which outputs
0:

Chapter 4: Programming 46

int f(pair a) {return 0;}
int f(explicit real x) {return 1;}

write(£(0));
Other conversions, say real to int or real to string, require an explicit cast:

int i=(int) 2.5;
string s=(string) 2.5;

real[] a={2.5,-3.5};
int[] b=(int [1) a;
write(stdout,b); // Outputs 2,-3

Casting to user-defined types is also possible using operator cast:

struct rpair {
public real radius;
public real angle;

}
rpair operator init() {return new rpair;}

pair operator cast(rpair x) {
return (x.radius*cos(x.angle),x.radius*sin(x.angle));

b

rpair x;
x.radius=1;
x.angle=pi/6;

write(x); // Outputs (0.866025403784439,0.5)

One must use care when defining new cast operators. Suppose that in some code one
wants all integers to represent multiples of 100. To convert them to reals, one would first
want to multiply them by 100. However, the straightforward implementation

real operator cast(int x) {return x*100;}

is equivalent to an infinite recursion, since the result x*100 needs itself to be cast from
an integer to a real. Instead, we want to use the standard conversion of int to real:

real convert(int x) {return x*100;}
real operator cast(int x)=convert;

Explicit casts are implemented similarly, with operator ecast.

4.13 Import

While Asymptote provides many features by default, some applications require specialized
features contained in external Asymptote modules. For instance, the lines

access graph;
graph.axes();

Chapter 4: Programming 47

draw x and y axes on a two-dimensional graph. Here, the command looks up the module
under the name graph in a global dictionary of modules and puts it in a new variable named
graph. The module is a structure, and we can refer to its fields as we usually would with a
structure.

Often, one wants to use module functions without having to specify the module name.
The code

from graph access axes;

adds the axes field of graph into the local name space, so that subsequently, one can just
write axes(). If the given name is overloaded, all types and variables of that name are
added. To add more than one name, just use a comma-separated list:

from graph access axes, xaxis, yaxis;

Wild card notation can be used to add all non-private fields and types of a module to the
local name space:

from graph access *;

Similarly, one can add the non-private fields and types of a structure to the local envi-
ronment with the unravel keyword:

struct matrix {
real a,b,c,d;

}

real det(matrix m) {
unravel m;
return axd-bx*c;

}

Alternatively, one can unravel selective fields:

real det(matrix m) {
from m unravel a,b,c as C,d;
return a*d-bx*C;

}
The command
import graph;
is a convenient abbreviation for the commands

access graph;
unravel graph;

That is, import graph first loads a module into a structure called graph and then adds
its non-private fields and types to the local environment. This way, if a member variable
(or function) is overwritten with a local variable (or function of the same signature), the
original one can still be accessed by qualifying it with the module name.

Wild card importing will work fine in most cases, but one does not usually know all of the
internal types and variables of a module, which can also change as the module writer adds
or changes features of the module. As such, it is prudent to add import commands at the
start of an Asymptote file, so that imported names won’t shadow locally defined functions.
Still, imported names may shadow other imported names, depending on the order in which

Chapter 4: Programming 48

they were imported, and imported functions may cause overloading resolution problems if
they have the same name as local functions defined later.

To rename modules or fields when adding them to the local environment, use as:

access graph as graph2d;
from graph access xaxis as xline, yaxis as yline;

The command
import graph as graph2d;
is a convenient abbreviation for the commands

access graph as graph2d;
unravel graph2d;

Currently, all modules are implemented as Asymptote files. When looking up a module
that has not yet been loaded, Asymptote searches the standard search paths (see Section 2.5
[Search paths|, page 4) for the matching file. The file corresponding to that name is read
and the code within it is interpreted as the body of a structure defining the module.

If the file name contains nonalphanumeric characters, enclose it with quotation marks:
access "/usr/share/asymptote/graph.asy" as graph;
from "/usr/share/asymptote/graph.asy" access axes;
import "/usr/share/asymptote/graph.asy" as graph;

It is an error if modules import themselves (or each other in a cycle).

The module name to be imported must be known at compile time. However, you can
execute an Asymptote file determined at runtime in a new Asymptote environment with
the function

void execute(string s, bool embedded=false);

One can evaluate an Asymptote expression (without any return value, however) con-
tained in the string s with:

void eval(string s, bool embedded=false);

If embedded is true, the string s will be evaluated at the top level of the current envi-
ronment instead of in an independent environment.

One can evaluate arbitrary Asymptote code (which may contain unescaped quotation
marks) with the command

void eval(code s, bool embedded=false);
Here code is a special type used with quote {} to enclose Asymptote code like this:
real a=1;
code s=quote {
write(a);
3
eval (s,true); // Outputs 1
To include the contents of a file graph verbatim (as if the contents of the file were inserted
at that point), use one of the forms:
include graph;
include "/usr/share/asymptote/graph.asy";

Chapter 4: Programming 49

4.14 Static

Static qualifiers allocate the memory address of a variable in a higher enclosing scope.

For a function body, the variable is allocated in the block where the function is defined;
so in the code

struct s {
int count() {
static int c=0;
++C;

return c;
}
}

there is one instance of the variable c for each object s (as opposed for each call of count).
Similarly, in
int factorial(int n) {
int helper(int k) {
static int x=1;
x *= k;
return k == 1 ? x : helper(k-1);
}

return helper(n);

}

there is one instance of x for every call to factorial (and not for every call to helper), so
this is a correct, but ugly, implementation of factorial.

Similarly, a static variable declared within a structure is allocated in the block where
the structure is defined. Thus,

struct A {
struct B {
static pair z;
}
}
creates one object z for each object of type A created.
In this example,
int pow(int n, int k) {
struct A {
static int x=1;
void helper() {
X *= n;
+
}
A operator init() {return new A;}
for (int i=0; i < k; ++i) {
A a;
a.helper();
}

Chapter 4: Programming 50

return A.x;
}
there is one instance of x for each call to pow, so this is an ugly implementation of expo-
nentiation.

Chapter 5: Drawing commands 51

5 Drawing commands

All of Asymptote’s graphical capabilities are based on four primitive commands. The three
PostScript drawing commands draw, £i11l, and clip add objects to a picture in the order
in which they are executed, with the most recently drawn object appearing on top. The
labeling command label can be used to add text labels and external EPS images, which
will appear on top of the PostScript objects (since this is normally what one wants), but
again in the relative order in which they were executed. After drawing objects on a picture,
the picture can be output with the shipout function (see [shipout], page 27).

If you wish to draw PostScript objects on top of labels (or verbatim tex commands;
see [tex], page 30), the layer command may be used to start a new PostScript/LaTeX
layer:

void layer(picture pic=currentpicture);

The layer function gives one full control over the order in which objects are drawn.
Layers are drawn sequentially, with the most recent layer appearing on top. Within each
layer, labels, images, and verbatim tex commands are always drawn after the PostScript
objects in that layer.

While some of these drawing commands take many options, they all have sensible default
values (for example, the picture argument defaults to currentpicture).

5.1 draw

void draw(picture pic=currentpicture, Label L="", path g,
align align=NoAlign, pen p=currentpen,
arrowbar arrow=None, arrowbar bar=None, margin margin=NoMargin,
Label legend="", marker marker=nomarker);

Draw the path g on the picture pic using pen p for drawing, with optional drawing attributes
(Label L, explicit label alignment align, arrows and bars arrow and bar, margins margin,
legend, and markers marker). Only one parameter, the path, is required. For convenience,
the arguments arrow and bar may be specified in either order. The argument legend is a
Label to use in constructing an optional legend entry.

Bars are useful for indicating dimensions. The possible values of bar are None, BeginBar,
EndBar (or equivalently Bar), and Bars (which draws a bar at both ends of the path). Each
of these bar specifiers (except for None) will accept an optional real argument that denotes
the length of the bar in PostScript coordinates. The default bar length is barsize (p).

The possible values of arrow are None, Blank (which draws no arrows or path),
BeginArrow, MidArrow, EndArrow (or equivalently Arrow), and Arrows (which draws an
arrow at both ends of the path). These arrow specifiers (except for None and Blank) may
be given the optional arguments real size (arrowhead size in PostScript coordinates),
real angle (arrowhead angle in degrees), Fill or NoFill, and (except also for MidArrow
and Arrows) a relative real position along the path (an arctime) where the tip of the
arrow should be placed. The default arrowhead size is arrowheadsize(p). There are also
arrow versions with slightly modified default values of size and angle suitable for curved
arrows: BeginArcArrow, EndArcArrow (or equivalently ArcArrow), MidArcArrow, and
ArcArrows.

Chapter 5: Drawing commands 52

Margins can be used to shrink the visible portion of a path by labelmargin(p) to avoid
overlap with other drawn objects. Typical values of margin are NoMargin, BeginMargin,
EndMargin (or equivalently Margin), and Margins (which leaves a margin at both ends
of the path). One may use Margin(real begin, real end) to specify the size of the
beginning and ending margin, respectively, in multiples of the units labelmargin(p)
used for aligning labels. Alternatively, BeginPenMargin, EndPenMargin (or equivalently
PenMargin), PenMargins, PenMargin(real begin, real end) specify a margin in units of
the pen linewidth, taking account of the pen linewidth when drawing the path or arrow.
For example, use DotMargin, an abbreviation for PenMargin(-0.5,0.5*dotfactor),
to draw from the usual beginning point just up to the boundary of an end dot of
width dotfactor*linewidth(p). The qualifiers BeginDotMargin, EndDotMargin, and
DotMargins work similarly. The qualifier TrueMargin(real begin, real end) allows one
to specify a margin directly in PostScript units, independent of the pen linewidth.

The use of arrows, bars, and margins is illustrated by the examples Pythagoras.asy,
sqrtx01.asy, and triads.asy.

The legend for a picture pic can be fit and aligned to a frame with the routine (see
[filltype], page 28)

frame legend(picture pic=currentpicture, pair dir=0,
real xmargin=legendmargin, real ymargin=xmargin,
real length=legendlinelength, real skip=legendskip,
pen p=currentpen) ;

Here length specifies the length of the path lines and skip specifies the line skip, in units
of the legend label fontsize. The legend frame can then be added about the point origin
to a picture dest using add or attach (see [add about|, page 28).

To draw a dot, simply draw a path containing a single point. The dot command defined
in the module plain draws a dot having a a diameter equal to an explicit pen linewidth or
the default linewidth magnified by dotfactor (6 by default):

void dot(picture pic=currentpicture, pair z, pen p=currentpen);

void dot(picture pic=currentpicture, pair[] z, pen p=currentpen);

void dot(picture pic=currentpicture, Label L, pair z, align align=NoAlign,
string format=defaultformat, pen p=currentpen)

void dot(picture pic=currentpicture, Label L, pen p=currentpen)

The third routine draws a dot at every point of a pair array z. If the special variable
Label is given as the Label argument to the fourth routine, the format argument will be
used to format a string based on the dot location (here defaultformat is "$%.4g$"). One
can also draw a dot at every node of a path:

void dot(picture pic=currentpicture, guide g, pen p=currentpen);
See [markers|, page 74 for a more general way of marking path nodes.

To draw a fixed-sized object (in PostScript coordinates) about the user coordinate
origin, use the routine

void draw(pair origin, picture pic=currentpicture, Label L="", path g,
align align=NoAlign, pen p=currentpen, arrowbar arrow=None,
arrowbar bar=None, margin margin=NoMargin, Label legend="",
marker marker=nomarker) ;

Chapter 5: Drawing commands 53

5.2 fill

void fill(picture pic=currentpicture, path g, pen p=currentpen);
Fill the interior region bounded by the cyclic path g on the picture pic, using the pen p.

There is also a convenient filldraw command, which fills the path and then draws in
the boundary. One can specify separate pens for each operation:

void filldraw(picture pic=currentpicture, path g, pen fillpen=currentpen,
pen drawpen=currentpen) ;

This fixed-size version of £ill allows one to fill an object described in PostScript
coordinates about the user coordinate origin:

void fill(pair origin, picture pic=currentpicture, path g, pen p=currentpen);
This is just a convenient abbreviation for the commands:
picture opic;
fill(opic,g,p);
add(origin,pic,opic);

Lattice gradient shading varying smoothly over a two-dimensional array of pens p, using
fillrule £illrule, can be produced with

void latticeshade(picture pic=currentpicture, path g,
pen fillrule=currentpen, pen[][] p)

The pens in p must belong to the same color space. One can use the functions rgb (pen)
or cmyk(pen) to promote pens to a higher color space, as illustrated in the example file
latticeshading.asy.

Axial gradient shading varying smoothly from pena to penb in the direction of the line
segment a--b can be achieved with

void axialshade(picture pic=currentpicture, path g,
pen pena, pair a,
pen penb, pair b);
Radial gradient shading varying smoothly from pena on the circle with center a and
radius ra to penb on the circle with center b and radius rb is similar:

void radialshade(picture pic=currentpicture, path g,
pen pena, pair a, real ra,
pen penb, pair b, real rb);

Illustrations of radial shading are provided in the example files shade.asy and ring.asy.

Gouraud shading using fillrule fillrule and the vertex colors in the pen array p on a
triangular lattice defined by the vertices z and edge flags edges is implemented with

void gouraudshade(picture pic=currentpicture, path g,

pen fillrule=currentpen, pen[] p, pair[] =z,

int[] edges);
The pens in p must belong to the same color space. Ilustrations of Gouraud shading are
provided in the example files Gouraud.asy and sphere.asy.

The following routine uses evenodd clipping together with the operator to unfill a

region:

void unfill(picture pic=currentpicture, path g);

Chapter 5: Drawing commands 54

5.3 clip

void clip(picture pic=currentpicture, path g, pen p=currentpen);

Clip the current contents of picture pic to the region bounded by the path g, using fillrule
p (see [fillrule], page 21). For an illustration of picture clipping, see the first example in
Chapter 6 [LaTeX usagel, page 58.

5.4 label

void label(picture pic=currentpicture, Label L, pair position,
align align=NoAlign, pen p=nullpen, filltype filltype=NoFill)

Draw Label L on picture pic using pen p. If align is NoAlign, the label will be centered at
user coordinate position; otherwise it will be aligned in the direction of align and displaced
from position by the PostScript offset align*labelmargin(p). If p is nullpen, the pen
specified within the Label, which defaults to currentpen, will be used. The Label L can
either be a string or the structure obtained by calling one of the functions

Label Label(string s="", pair position, align align=NoAlign,
pen p=nullpen, filltype filltype=NoFill);

Label Label(string s="", align align=NoAlign,
pen p=nullpen, filltype filltype=NoFill);

Label Label(Label L, pair position, align align=NoAlign,
pen p=nullpen, filltype filltype=NoFill);

Label Label(Label L, align align=NoAlign,
pen p=nullpen, filltype filltype=NoFill);

The text of a Label can be scaled horizontally and/or vertically by multiplying it on the
left with xscale(real), yscale(real), or scale(real). After optionally scaling a Label,
it can be rotated by an angle by multiplying it on the left with a rotation (in degrees):
for example, rotate(45)*xscale(2)*L first scales L in the x direction and then rotates
it counterclockwise by 45 degrees. The final position of a Label can also be shifted by a
PostScript coordinate translation like this: shift(10,0)*L.

To add a label to a path, use

void label(picture pic=currentpicture, Label L, path g, align align=NoAlign,
pen p=nullpen, filltype filltype=NoFill);

By default the label will be positioned at the midpoint of the path. An alternative label
location (an arctime value between 0 and length(g) see [arctime|, page 18) may be spec-
ified as real value for position in constructing the Label. The position Relative(real)
specifies a location relative to the total arclength of the path. These convenient abbrevia-
tions are predefined:

position BeginPoint=Relative(0);
position MidPoint=Relative(0.5);
position EndPoint=Relative(1);

Path labels are aligned in the direction align, which may be specified as an absolute
compass direction (pair) or a direction Relative(pair) measured relative to a north axis
in the local direction of the path. For convenience LeftSide, Center, and RightSide are
defined as Relative (W), Relative((0,0)), and Relative(E), respectively. Multiplying

Chapter 5: Drawing commands 55

LeftSide, Center, RightSide on the left by a real scaling factor will move the label further
away from or closer to the path.

A label with a fixed-size arrow of length arrowlength pointing to b from direction dir
can be produced with the routine

void arrow(picture pic=currentpicture, Label L="", pair b, pair dir,
real length=arrowlength, align align=NoAlign,
pen p=currentpen, arrowbar arrow=Arrow, margin margin=EndMargin);

If no alignment is specified (either in the Label or as an explicit argument), the optional
Label will be aligned in the direction dir, using margin margin.

The function string graphic(string name, string options="") returns a string that
can be used to include an encapsulated PostScript (EPS) file. Here, name is the name
of the file to include and options is a string containing a comma-separated list of op-
tional bounding box (bb=11x 11y urx ury), width (width=value), height (height=value),
rotation (angle=value), scaling (scale=factor), clipping (clip=bool), and draft mode
(draftx=bool) parameters. The layer () function can be used to force future objects to
be drawn on top of the included image:

label(graphic("file.eps","width=1cm"), (0,0) ,NE);
layer();

The string baseline(string s, align align=S, string template="M") function
can be used to enlarge the bounding box of letters aligned below a horizontal line to match
a given template, so that their baselines lie on a horizontal line. See Pythagoras.asy for
an example.

The string minipage(string s, width=100pt) function can be used to format string
s into a paragraph of width width, as illustrated in the following example:

size(9cm,10cm, IgnoreAspect) ;

pair d=(1,0.25);

real s=1.6d.x;

real y=0.6;
defaultpen(fontsize(8));

picture box(string s, pair z=(0,0)) {
picture pic;
draw(pic,box(-d/2,d/2));
label (pic,s, (0,0));
return shift(z)*pic;

label("Birds", (0,y));

picture removed=box("Removed (R_B)");

picture infectious=box("Infectious (I_B)",(0,-1.5));
picture susceptible=box("Susceptible (S_B)",(0,-3));

add (removed) ;
add(infectious);

Chapter 5: Drawing commands

add (susceptible);

label("Mosquitoes", (s,y));

picture larval=box("Larval (L_M)",(s,0));

picture susceptibleM=box("Susceptible (S_M)",(s,-1));
picture exposed=box("Exposed (E_M)",(s,-2));

picture infectiousM=box("Infectious (I_M)",(s,-3));

add(larval);
add (susceptibleM);
add (exposed) ;
add (infectiousM) ;

path 1ls=point(larval,S)--point(susceptibleM,N);
path se=point(susceptibleM,S)--point (exposed,N);
path ei=point(exposed,S)--point(infectiousM,N);
path si=point(susceptible,N)--point(infectious,S);

draw(minipage ("\flushright{recovery rate (g) \& death rate from virus
(μ_v)}",40pt) ,point (infectious,N)--point (removed,S) ,LeftSide,Arrow,
PenMargin) ;

draw(si,LeftSide,Arrow,PenMargin) ;

draw(minipage ("\flushright{maturation rate (m)}",50pt),1s,RightSide,
Arrow,PenMargin) ;

draw(minipage ("\flushright{viral incubation rate (k)}",40pt),ei,
RightSide,Arrow,PenMargin) ;

path ise=point(infectious,E)--point(se,0.5);

draw("(ac)",ise,LeftSide,dashed,Arrow,PenMargin) ;
label (minipage ("\flushleft{biting rate \times transmission
probability}",50pt) ,point (infectious,SE),dir(-60)+S);

path isi=point(infectiousM,W)--point(si,2.0/3);

draw("(ab)",isi,LeftSide,dashed,Arrow,PenMargin);
draw(se,LeftSide,Arrow,PenMargin) ;

real t=2.0;
draw("β_M",
point (susceptibleM,E){right}..tension t..{left}point(larval,E),
2% (S+SE) ,red,Arrow(Fill,0.5));
draw(minipage ("\flushleft{birth rate (β_M)}",20pt),
point (exposed,E){right}..tension t..{left}point(larval,E),2SW,red,
Arrow(Fill,0.5));

56

Chapter 5: Drawing commands 57

draw("β_M",
point (infectiousM,E){right}..tension t..{left}point(larval,E),2SW,

red,Arrow(Fill,0.5));

path arrow=(0,0)--0.75cm*dir(35);
draw(point(larval,NNE),
Label (minipage("\flushleft{larval death rate (μ_L)}",45pt),1),
arrow,blue,Arrow) ;
draw(point (susceptibleM,NNE),
Label (minipage("\flushleft{adult death rate (μ_A)}",20pt),1),
arrow,N,blue,Arrow) ;
draw(point (exposed,NNE) ,Label ("μ_A",1) ,arrow,blue,Arrow) ;
draw(point (infectiousM,NNE) ,Label ("μ_A",1) ,arrow,blue,Arrow) ;

Birds Mosquitoes
larval death
/ rate (ur)
Removed (Rp) Larval (Lpyr)
adult
turati death
recovery maturation rate
rate (g) & rate (m) (a)
death rate
from virus /
() Susceptible (Sar)
) (ac)
Infectious (Ip) F—-—--—-—-=—-— -
biting rate x / A
transmission
probability Exposed (EI\/I)
N
N
AN viral
AN incubation
(ab) ~ R rate (k) LA
h N /
N
Susceptible (Sp) Infectious (Ipr)

One can prevent labels from overwriting one another with the overwrite pen attribute
(see [overwrite|, page 25).

Chapter 6: LaTeX usage 58

6 LaTeX usage

Asymptote comes with a convenient LaTeX style file asymptote.sty that makes LaTeX
Asymptote-aware. Entering Asymptote code directly into the LaTeX source file, at the point
where it is needed, keeps figures organized and avoids the need to invent new file names
for each figure. Simply add the line \usepackage{asymptote} at the beginning of your file
and enclose your Asymptote code within a \begin{asy}...\end{asy} environment. As
with the LaTeX comment environment, the \end{asy} command must appear on a line by
itself, with no leading spaces or trailing commands/comments.

The sample LaTeX file below, named latexusage.tex, can be run as follows:

latex latexusage
asy latexusage
latex latexusage

If the [inline] package option is given to asymptote.sty, inline LaTeX code is generated
instead of EPS files. This makes LaTeX symbols visible to the \begin{asy}...\end{asy}
environment. In this mode, Asymptote correctly aligns LaTeX symbols defined outside of
\begin{asy?}...\end{asy}, but treats their size as zero; an optional second string can be
given to Label to provide an estimate of the unknown label size. Note that labels might
not show up in DVI viewers that cannot handle raw PostScript code; use dvips/dvipdf
to produce PostScript/PDF output. We recommend using the modified version of dvipdf
in the Asymptote patches directory, which accepts the dvips -z hyperdvi option.

An excellent tutorial by Dario Teixeira on integrating Asymptote and LaTeX is available
at http://dario.dse.nl/projects/asylatex/.

Here now is latexusage.tex:

\documentclass[12pt]{article}

% Use this form to include eps files:
\usepackage{asymptote}

% Use this form to include inline LaTeX code.
7%\usepackage[inline] {asymptote}

% Enable this line to produce pdf hyperlinks
%\usepackage [hypertex] {hyperref}

\begin{document}

\begin{asydef}

// Global definitions can be put here.
\end{asydef}

Here is a venn diagram
%(Figure™\ref{venn})
produced with Asymptote, drawn to width 5cm:

\def\A{A}

http://dario.dse.nl/projects/asylatex/

Chapter 6: LaTeX usage

\def\B{B}

%\begin{figure}
\begin{center}
\begin{asy}
size(5cm,0);

pen colourl=red;
pen colour2=green;

pair z0=(0,0);
pair z1=(-1,0);
pair z2=(1,0);
real r=1.5;

guide cl=circle(zl,r);
guide c2=circle(z2,r);

£fill(cl,colourl);
£fill(c2,colour?2);

picture intersection=new picture;
fill(intersection,cl,colourl+colour?2);
clip(intersection,c2);

add(intersection);

draw(cl);
draw(c2);

//box (Label ("\A",z1));
//box(Label ("\B","B",=z2));

box(Label ("A",z1));
box (Label ("B" ,z2));

pair z=(0,-2);
real m=3;

margin BigMargin=Margin(0,m*dot (unit(z1-z),unit(z0-2z)));

draw(Label ("$A\cap B$",0),conj(z)--z0,Arrow,BigMargin);
draw(Label ("$A\cup B$",0),z--z0,Arrow,BigMargin) ;
draw(z--z1,Arrow,Margin(0,m)) ;
draw(z--z2,Arrow,Margin(0O,m));

shipout (bbox (0.25cm)) ;

\end{asy}

%\caption{Venn diagram}\label{venn}

\end{center}
’\end{figure}

99

// Requires [inline] package option.
// Requires [inline] package option.

Chapter 6: LaTeX usage 60

Each graph is drawn in its own environment. One can specify the width
and height to \LaTeX\ explicitly:

\begin{center}
\begin{asy} [3cm,0]
guide center = (0,1){W}..tension 0.8..(0,0){(1,-.5)}. .tension 0.8..{W}(0,-1);

draw((0,1)..(-1,0)..(0,-1));
filldraw(center{E}..{N}(1,0)..{W}cycle);
£i1l(circle((0,0.5),0.125) ,white);
£fill(circle((0,-0.5),0.125));

\end{asy}

\end{center}

The default width is the full line width:

\begin{center}
\begin{asy}
import graph;

real f(real x) {return sqrt(x);}
pair F(real x) {return (x,f(x));}

real g(real x) {return -sqrt(x);}
pair G(real x) {return (x,g(x));}

guide p=(0,0)--graph(f,0,1,operator ..)--(1,0);
f£i11(p--cycle,lightgray);

draw(p) ;

draw((0,0)--graph(g,0,1,operator ..)--(1,0),dotted);

real x=0.5;
pair c=(4,0);

transform T=xscale(0.5);

draw((2.695,0) ,T*arc(0,0.30cm,20,340) ,ArcArrow) ;
£fill(shift(c)*Txcircle(0,-f(x)) ,red+white);
draw(F(x)--c+(0,f(x)),dashed+red) ;
draw(G(x)--c+(0,g(x)) ,dashed+red);

dot (Label, (1,1));
arrow ("$y=\sqrt{x}$",F(0.7),N);

arrow((3,0.5%f(x)),W,1lcm,red);
arrow((3,-0.5%f(x)),W,1lcm,red);

xaxis("x",0,c.x,dashed);

Chapter 6: LaTeX usage

aniS("Y") ;

draw("r", (x,0)--F(x) ,E,red,Arrows,BeginBar,PenMargins) ;
draw("r", (x,0)--G(x) ,E,red,Arrows,PenMargins) ;
draw("r",c--c+(0,f(x)) ,Arrow,PenMargin) ;

dot(c);

\end{asy}

\end{center}

\end{document}

61

Chapter 6: LaTeX usage 62

Here is a venn diagram produced with Asymptote, drawn to width 5cm:

ANB

AUB

Each graph is drawn in its own environment. One can specify the width
and height to BTREX explicitly:

The default width is the full line width:

'

Chapter 7: Base modules 63

7 Base modules

Asymptote currently ships with the following base modules:

7.1 plain

This is the default Asymptote base file, which defines key parts of the drawing language
(such as the picture structure).

By default, an implicit private import plain; occurs before translating a file and be-
fore the first command given in interactive mode. This also applies when translating files
for module definitions (except when translating plain, of course). This means that the
types and functions defined in plain are accessible in almost all Asymptote code. Use the
-noautoplain command-line option to disable this feature.

7.2 simplex

This package solves the two-variable linear programming problem using the simplex method.
It is used by the module plain for automatic sizing of pictures.

7.3 math

This package extends Asymptote’s mathematical capabilities with radian/degree conversion
routines, point-in-polygon and intersection algorithms, matrix arithmetic and inversion, and
a linear equation solver (via Gauss-Jordan elimination).

Unlike MetaPost, Asymptote does not implicitly solve linear equations and therefore
does not have the notion of a whatever unknown. The following routine provides a useful
replacement for a common use of whatever: finding the intersection point of the lines
through P, Q and p, q, respectively:

pair extension(pair P, pair Q, pair p, pair q);
Return the intersection point of the extensions of the line segments PQ and pq.

Here are some additional routines provided in the math package:

void drawline(picture pic=currentpicture, pair P, pair Q, pen p=currentpen) ;
draw the visible portion of the (infinite) line going through P and Q, without
altering the size of picture pic, using pen p.

real intersect(triple P, triple Q, triple n, triple Z);
Return the intersection time of the extension of the line segment PQ with the
plane perpendicular to n and passing through Z.

triple intersectionpoint(triple nO, triple PO, triple nl, triple P1);
Return any point on the intersection of the two planes with normals n0 and
nl passing through points PO and P1, respectively. If the planes are parallel,
return (infinity,infinity,infinity).

real[] solve(real[][] a, reall] b)
Solve the linear equation ax = b by Gauss-Jordan elimination, returning the
solution x, where a is an n x n matrix and b is an array of length n. For
example:

Chapter 7: Base modules 64

import math;

reall][] a={{1,-2,3,0},{4,-5,6,2},{-7,-8,10,5},{1,50,1,-2}};
reall] b={7,19,33,3};

real[] x=solve(a,b);

write(a); write();

write(b); write();

write(x); write();

write(a*x);

If the matrix a is tridiagonal, the routine tridiagonal provides a more efficient
algorithm (see [tridiagonal], page 44).

real[] [] solve(reall[l[] a, realll[] b)
Solve the linear equation ax = b returning the solution x, where a is an n x n
matrix and b is an n X m matrix.

bool straight (path p)
returns true iff the path p is straight.
7.4 geometry
This module provides the beginnings of a geometry package. It currently includes a triangle

structure and functions to draw interior arcs of triangles and perpendicular symbols.

7.5 stats

This package implements a Gaussian random number generator and a collection of statistics
routines, including histogram and leastsquares.

7.6 patterns

This package implements Postscript tiling patterns and includes several convenient pattern
generation routines.

7.7 palette

This package implements color density images and palette bars, along with several prede-
fined palettes (see [images|, page 86).

7.8 tree

This package implements an example of a dynamic binary search tree.

7.9 drawtree

This is a simple tree drawing module used by the example treetest.asy.

7.10 feynman

This package, contributed by Martin Wiebusch, is useful for drawing Feynman diagrams,
as illustrated by the examples eetomumu.asy and fermi.asy.

Chapter 7: Base modules 65

7.11 roundedpath

This package, contributed by Stefan Knorr, is useful for rounding the sharp corners of paths,
as illustrated in the example file roundpath.asy.

7.12 MetaPost

This package provides some useful routines to help MetaPost users migrate old MetaPost
code to Asymptote.

7.13 unicode

Import this package at the beginning of the file to instruct LaTeX to accept unicode (UTF-
8) standardized international characters. You will also need to set up LaTeX support for
unicode by unpacking in your LaTeX source directory (e.g. /usr/share/texmf/tex/latex)
the file

http://www.unruh.de/DniQ/latex/unicode/unicode.tgz
and then running the command
texhash
To use Cyrillic fonts, you will need to change the font encoding:

import unicode;
texpreamble ("\usepackage{mathtext}\usepackage [russian]{babel}");
defaultpen(font ("T2A","cmr"));

Support for Chinese, Japanese, and Korean fonts is provided by the CJK package:
http://www.tug.org/tex-archive/languages/chinese/CJK/

The following commands enable the CJK song family (within a label, you can also tem-
porarily switch to another family, say kai, by prepending "\CJKfamily{kai}" to the label
string):

texpreamble ("\usepackage{CJK}
\AtBeginDocument{\begin{CJK*}{GBK}{song}}
\AtEndDocument{\clearpage\end{CJK*}}");

7.14 latinl

If you don’t have LaTeX support for unicode installed, you can enable support for Western
European languages (ISO 8859-1) by importing the module latinl. This module can be
used as a template for providing support for other ISO 8859 alphabets.

7.15 babel
This module implements the LaTeX babel package in Asymptote. For example:

import babel;
babel("german") ;

http://www.unruh.de/DniQ/latex/unicode/unicode.tgz
http://www.tug.org/tex-archive/languages/chinese/CJK/

Chapter 7: Base modules 66

7.16 embed
This module provides an interface to the LaTeX package (included with MikTeX)

http://www.tug.org/tex-archive/macros/latex/contrib/moviel’s

for embedding movies, sounds, and 3D objects into a PDF document. Note that Adobe
unfortunately has not yet made available the required plugins for the Linux version of
Adobe Reader.

An example of this interface is provided in the file embeddedmovie.asy in the
animations subdirectory of the examples directory.

7.17 graph

This package implements two-dimensional linear and logarithmic graphs, including auto-
matic scale and tick selection (with the ability to override manually). A graph is a guide
(that can be drawn with the draw command, with an optional legend) constructed with one
of the following routines:

guide graph(picture pic=currentpicture, real f(real), real a, real D,
int n=ngraph, interpolate join=operator --);

Returns a graph using the scaling information for picture pic (see [automatic scaling],

page 76) of the function f on the interval [a,b], sampling at n evenly spaced points,

with one of these interpolation types:

e operator —- (linear interpolation; the abbreviation Straight is also accepted)

e operator .. (piecewise Bezier cubic spline interpolation; the abbreviation Spline
is also accepted)

guide graph(picture pic=currentpicture, real x(real), real y(real),

real a, real b, int n=ngraph,

interpolate join=operator --);
Returns a graph using the scaling information for picture pic of the parametrized
function (x(t),y(t)) for ¢ in [a,b], sampling at n evenly spaced points, with the given
interpolation type.

guide graph(picture pic=currentpicture, pair z(real), real a, real b,
int n=ngraph, interpolate join=operator --);

Returns a graph using the scaling information for picture pic of the parametrized func-

tion z(¢) for ¢ in [a,b], sampling at n evenly spaced points, with the given interpolation

type.

guide graph(picture pic=currentpicture, pair[] z, bool[] cond={},
interpolate join=operator --);

Returns a graph using the scaling information for picture pic of those elements of the

array z for which the corresponding elements of the boolean array cond are true, with

the given interpolation type.

http://www.tug.org/tex-archive/macros/latex/contrib/movie15

Chapter 7: Base modules 67

guide graph(picture pic=currentpicture, reall[] x, reall] vy,
bool[] cond={}, interpolate join=operator --);

Returns a graph using the scaling information for picture pic of those elements of the
arrays (x,y) for which the corresponding elements of the boolean array cond are true,
with the given interpolation type.

guide graph(real f(real), real a, real b, int n=ngraph, real T(real),
interpolate join=operator --);

Returns a graph using the scaling information for picture pic of the function £ on

the interval [T(a),T(b)], sampling at n points evenly spaced in [a,b], with the given

interpolation type.

Q@cindex Qcode{polargraph}
guide polargraph(real f(real), real a, real b, int n=ngraph,

interpolate join=operator --);
Returns a polar-coordinate graph using the scaling information for picture pic of the
function f on the interval [a,b], sampling at n evenly spaced points, with the given
interpolation type.

An axis can be drawn on a picture with one of the following commands:

void xaxis(picture pic=currentpicture, Label L="", axis axis=YZero,
real xmin=-infinity, real xmax=infinity, pen p=currentpen,
ticks ticks=NoTicks, arrowbar arrow=None, bool put=Below);

Draw an z axis on picture pic from x=xmin to z=xmax using pen p, optionally labelling
it with Label L. The relative label location along the axis (a real number from [0,1])
defaults to 1 (see [Label], page 54), so that the label is drawn at the end of the axis.
An infinite value of xmin or xmax specifies that the corresponding axis limit will be
automatically determined from the picture limits. The optional arrow argument takes
the same values as in the draw command (see [arrows|, page 51). If put=Below and
the extend flag for axis is false, the axis is drawn before any existing objects in the
current picture. The axis placement is determined by one of the following axis types:

YZero(bool extend=true)
Request an z axis at y=0 (or y=1 on a logarithmic axis) extending to the
full dimensions of the picture, unless extend=false.

YEquals(real Y, bool extend=true)
Request an x axis at y=Y extending to the full dimensions of the picture,
unless extend=false.

Bottom(bool extend=false)
Request a bottom axis.

Chapter 7: Base modules 68

Top(bool extend=false)
Request a top axis.

BottomTop(bool extend=false)
Request a bottom and top axis.

Custom axis types can be created by following the examples in graph.asy. One can
easily override the default values for the standard axis types:

import graph;

YZero=new axis(bool extend=true) {
return new void(picture pic, axisT axis) {
real y=pic.scale.x.scale.logarithmic ? 1 : O;
axis.value=Ix*pic.scale.y.T(y);
axis.position=1;
axis.side=right;
axis.align=2.5E;
axis.value2=Infinity;
axis.extend=extend;
3
s
YZero=YZero() ;

The default tick option is NoTicks. The option LeftTicks (RightTicks) can be used
to draw ticks on the left (right) of the path, relative to the direction in which the path
is drawn. These tick routines accept a number of optional arguments:

ticks LeftTicks(Label format="", ticklabel ticklabel=null,
bool beginlabel=true, bool endlabel=true,
int N=0, int n=0, real Step=0, real step=0,
bool begin=true, bool end=true,
real Size=0, real size=0, bool extend=false,
pen pTick=nullpen, pen ptick=nullpen);

If any of these parameters are omitted, reasonable defaults will be chosen:

Label format
override the default tick label format (defaultformat, initially
"$%.4g$"), rotation, pen, and alignment (for example, LeftSide, Center,
or RightSide) relative to the axis. To enable LaTeX math mode fonts, the
format string should begin and end with $ see [format]|, page 13; if the
format string is "%", the tick label will be suppressed;

ticklabel
is a function string(real x) returning the label (by default,
format(format.s,x)) for each tick value x;

bool beginlabel
include the first label;

bool endlabel
include the last label;

Chapter 7: Base modules 69

int N when automatic scaling is enabled (the default; see [automatic scaling],
page 76), divide the values evenly into this many intervals, separated by
big ticks;

int n divide each value interval into this many subintervals, separated by small
ticks;

real Step the tick value spacing between big ticks (if N=0);
real step the tick value spacing between small ticks (if n=0);

bool begin
include the first big tick;

bool end include the last big tick;
real Size the size of the big ticks (in PostScript coordinates);
real size the size of the small ticks (in PostScript coordinates);

bool extend;
extend the big ticks across the graph (useful for drawing a grid on the

graph);
pen pTick an optional pen used to draw the big ticks;

pen ptick an optional pen used to draw the small ticks.

It is also possible to specify custom tick locations with LeftTicks and RightTicks by
passing explicit real arrays Ticks and (optionally) ticks containing the locations of
the big and small ticks, respectively:

ticks LeftTicks(Label format="", ticklabel ticklabel=null,
bool beginlabel=true, bool endlabel=true,
real[] Ticks, reall] ticks=new reall],
real Size=0, real size=0, bool extend=false,
pen pTick=nullpen, pen ptick=nullpen)

void yaxis(picture pic=currentpicture, Label L="", axis axis=XZero,

real ymin=-infinity, real ymax=infinity, pen p=currentpen,

ticks ticks=NoTicks, arrowbar arrow=None, bool put=Below);
Draw a y axis on picture pic from y=ymin to y=ymax using pen p, optionally labelling
it with Label L. The relative location of the label (a real number from [0,1]) defaults to 1
(see [Label], page 54). An infinite value of ymin or ymax specifies that the corresponding
axis limit will be automatically determined from the picture limits. The optional
arrow argument takes the same values as in the draw command (see [arrows|, page 51).
If put=Below and the extend flag for axis is false, the axis is drawn before any
existing objects in the current picture. The tick type is specified by ticks and the axis
placement is determined by one of the following axis types:

XZero(bool extend=true)
Request a y axis at =0 (or z=1 on a logarithmic axis) extending to the
full dimensions of the picture, unless extend=false.

Chapter 7: Base modules 70

XEquals(real X, bool extend=true)
Request a y axis at =X extending to the full dimensions of the picture,
unless extend=false.

Left(bool extend=false)
Request a left axis.

Right (bool extend=false)
Request a right axis.

LeftRight (bool extend=false)
Request a left and right axis.

For convenience, the functions

void xequals(picture pic=currentpicture, Label L="", real x,
bool extend=false, real ymin=-infinity, real ymax=infinity,
pen p=currentpen, ticks ticks=NoTicks, bool put=Above,
arrowbar arrow=None);

and

void yequals(picture pic=currentpicture, Label L="", real vy,
bool extend=false, real xmin=-infinity, real xmax=infinity,
pen p=currentpen, ticks ticks=NoTicks, bool put=Above,
arrowbar arrow=None) ;

can be respectively used to call yaxis and xaxis with the appropriate axis types
XEquals(x,extend) and YEquals(y,extend). This is the recommended way of draw-
ing vertical or horizontal lines and axes at arbitrary locations.

void axis(picture pic=currentpicture, Label L="", guide g,
pen p=currentpen, ticks ticks, ticklocate locate,
arrowbar arrow=None, int[] divisor=new int[],
bool put=Above, bool opposite=false);

This routine can be used to draw on picture pic a general axis based on an arbitrary
path g, using pen p. One can optionally label the axis with Label L and add an arrow
arrow. The tick type is given by ticks. The optional integer array divisor specifies
what tick divisors to try in the attempt to produce uncrowded tick labels. A true value
for the flag opposite identifies an unlabelled secondary axis (typically drawn opposite
a primary axis). The axis is drawn on top of any existing objects in the current picture
only if put is Above. The tick locater ticklocate is constructed by the routine

ticklocate ticklocate(real a, real b, autoscaleT S=defaultS$,
real tickmin=-infinity, real tickmax=infinity,
real time(real)=null, pair dir(real)=zero);
where a and b specify the respective tick values at point(g,0) and
point(g,length(g)), S specifies the autoscaling transformation, the func-
tion real time(real v) returns the time corresponding to the value v, and pair
dir(real t) returns the absolute tick direction as a function of t (zero means draw
the tick perpendicular to the axis).

Chapter 7: Base modules 71

e These routines are useful for manually putting ticks and labels on axes (if the special
variable Label is given as the Label argument, the format argument will be used to
format a string based on the tick location):

void xtick(picture pic=currentpicture, Label L="", pair z,
pair dir=N, string format="",
real size=Ticksize, pen p=currentpen);
void ytick(picture pic=currentpicture, Label L="", explicit pair z,
pair dir=E, string format="",
real size=Ticksize, pen p=currentpen);
void ytick(picture pic=currentpicture, Label L="", real vy,
pair dir=E, string format="",
real size=Ticksize, pen p=currentpen);
void tick(picture pic=currentpicture, pair z,
pair dir, real size=Ticksize, pen p=currentpen);
void labelx(picture pic=currentpicture, Label L="", pair z,
align align=S, string format="", pen p=nullpen);
void labelx(picture pic=currentpicture, Label L,
string format="", explicit pen p=currentpen) ;
void labely(picture pic=currentpicture, Label L="", explicit pair z,
align align=W, string format="", pen p=nullpen);
void labely(picture pic=currentpicture, Label L="", real vy,
align align=W, string format="", pen p=nullpen);
void labely(picture pic=currentpicture, Label L,
string format="", explicit pen p=nullpen);

Here are some simple examples of two-dimensional graphs:
1. This example draws a textbook-style graph of y = exp(z), with the y axis starting at
y =0

import graph;
size(150,0);

real f(real x) {return exp(x);}
pair F(real x) {return (x,f(x));}

xaxis("x");
yaxis("y",0);

draw(graph(f,-4,2,operator ..),red);

labely(1,E);
label("$e"x$",F(1),SE);

Chapter 7: Base modules 72

2. The next example draws a scientific-style graph with a legend. The position of the
legend can be adjusted either explicitly or by using the graphical user interface xasy (see
Chapter 10 [GUI|, page 104). If an UnFill(real xmargin=0, real ymargin=xmargin)
or Fill(pen) option is specified to add, the legend will obscure any underlying objects.
Here we illustrate how to clip the portion of the picture covered by a label:

import graph;
size (400,200, IgnoreAspect) ;

real Sin(real t) {return sin(2pixt);}
real Cos(real t) {return cos(2pi*t);}

draw(graph(Sin,0,1) ,red,"$\sin(2\pi x)$");
draw(graph(Cos,0,1) ,blue,"$\cos(2\pi x)$");

xaxis ("x" ,BottomTop,LeftTicks);
yaxis("y",LeftRight ,RightTicks);

label ("LABEL",point (0) ,UnFill(1mm));

Chapter 7: Base modules 73

add (point (E) ,legend (20E) ,UnFill);

1= x w T w — x
0.8
0.6
0.4

0.2 .
T 1 —— sin(27x)
Y 0 LABEL

—0.2F /1 —— cos(27x)

—04 .

—0.6 - -

~0.8} .

| | | | | -

0 010203040506 070809 1
x

T
|

T
|

T
|

|
|

To specify a fixed size for the graph proper, use attach.
import graph;

size (250,200, IgnoreAspect) ;

real Sin(real t) {return sin(2pi*t);}
real Cos(real t) {return cos(2pix*t);}

draw(graph(Sin,0,1) ,red,"$\sin(2\pi x)$");
draw(graph(Cos,0,1) ,blue,"$\cos(2\pi x)$");

xaxis("x",BottomTop,LeftTicks);
yaxis ("y" ,LeftRight ,RightTicks);

label ("LABEL",point(0) ,UnFill(1mm));

attach(point (E) ,legend(20E) ,UnFill);

3. This example draws a graph of one array versus another (both of the same size) using
custom tick locations and a smaller font size for the tick labels on the y axis.

import graph;
size (200,150, IgnoreAspect) ;

real[] x={0,1,2,3};
reall]l y=x"2;

draw(graph(x,y) ,red,MarkFill[0]);

Chapter 7: Base modules 74

xaxis("x",BottomTop,LeftTicks);
yaxis("y",LeftRight,RightTicks(Label(fontsize(8)) ,new real[]1{0,4,9}));

4. The next example draws two graphs of an array of coordinate pairs, using frame align-
ment and data markers. In the left-hand graph, the markers, constructed with

marker marker(path g, markroutine markroutine=marknodes,
pen p=currentpen, filltype filltype=NoFill,
bool put=Above) ;

using the path unitcircle (see [filltype], page 28), are drawn below each node. Any
frame can be converted to a marker, using

marker marker (frame f, markroutine markroutine=marknodes,
bool put=Above);

In the right-hand graph, the unit n-sided regular polygon polygon(int n) and the
unit m-point cross cross(int n) are used to build a custom marker frame. Here
markuniform(int n) adds this frame at n uniformly spaced points along the arclength
of the path. This example also illustrates the errorbar routines:

void errorbars(picture pic=currentpicture, pair[] z, pair[] dp,
pair[] dm={}, bool[] cond={}, pen p=currentpen,
real size=0);

void errorbars(picture pic=currentpicture, reall[] x, reall] vy,
real[] dpx, reall] dpy, reall] dmx={}, reall] dmy={},
bool[] cond={}, pen p=currentpen, real size=0);

Here, the positive and negative extents of the error are given by the absolute values of
the elements of the pair array dp and the optional pair array dm. If dm is not specified,
the positive and negative extents of the error are assumed to be equal.

import graph;

picture pic;
real xsize=200, ysize=140;
size(pic,xsize,ysize,IgnoreAspect);

Chapter 7: Base modules 75

pair[] £={(5,5),(50,20),(90,90)};
pair[] df={(0,0),(5,7),(0,5)};

errorbars(pic,f,df,red);
draw(pic,graph(pic,f),"legend",
marker (scale(0.8mm)*unitcircle,blue,Fill,Below));

xaxis(pic,"x" ,BottomTop,LeftTicks);
yaxis(pic,"y",LeftRight,RightTicks);
add (point (pic,NW) ,pic,legend(pic,20SE),UnFill);

picture pic2;
size(pic2,xsize,ysize,IgnoreAspect);

frame mark;
filldraw(mark,scale(0.8mm)*polygon(6) ,green);
draw(mark,scale(0.8mm)*cross(6) ,blue) ;

draw(pic2,graph(pic2,f) ,marker (mark,markuniform(5)));

xaxis(pic2,"x",BottomTop,LeftTicks);
yaxis(pic2,"y",LeftRight,RightTicks);

yequals(pic2,55.0,red+Dotted) ;
xequals(pic2,70.0,red+Dotted) ;

// Fit pic to W of origin:
add(pic.fit () ,W);

// Fit pic2 to E of (5mm,0):
add ((5mm,0) ,pic2.fit(),E);

100 T | T | T I T I T 100 T T T x T

80 - .

60 .
) -] Y
40 - N

20 - N

0 | | | | | | | | |
0 20 40 60 80 100

5. This example draws a graph of a parametrized curve.
The calls to

Chapter 7: Base modules 76

xlimits(picture pic=currentpicture, real min=-infinity,
real max=infinity, bool crop=Crop);

and the analogous function ylimits can be uncommented to restrict the respective axes
limits for picture pic to the specified min and max values (alternatively, the function
limits(pair, pair) can be used to limit the axes to the box having opposite vertices
at the given pairs). Existing objects in picture pic will be cropped to lie within the
given limits if crop=Crop. The function crop(picture pic) is equivalent to calling
both x1imits(Crop) and ylimits(Crop).

import graph;
size(0,200);

real x(real t) {return cos(2pixt);}
real y(real t) {return sin(2pix*t);}

draw(graph(x,y,0,1));

//x1imits(0,1);
//ylimits(-1,0);

xaxis ("x" ,BottomTop,LeftTicks ("$%#.1£$"));
yaxis("y",LeftRight ,RightTicks ("$%#.1£$"));

Axis scaling can be requested and/or automatic selection of the axis limits can be
inhibited with the scale routine:

void scale(picture pic=currentpicture, scaleT x, scaleT y);

This sets the scalings for picture pic. The graph routines accept an optional picture
argument for determining the appropriate scalings to use; if none is given, it uses those

Chapter 7: Base modules 7

set for currentpicture. All path coordinates (and any call to limits, etc.) refer to
scaled data. Two frequently used scaling routines Linear and Log are predefined in
graph.

Scaling routines can be given two optional boolean arguments: automin and automax
These default to true, but can be respectively set to false to disable automatic selec-
tion of "nice" axis minimum and maximum values. Linear can also take as an optional
final argument a multiplicative scaling factor (e.g. for a depth axis, Linear(-1) re-
quests axis reversal).

For example, to draw a log graph of a function, use scale(Log,Log):

import graph;

size (200,200, IgnoreAspect) ;
real f(real t) {return 1/t;}
scale(Log,Log);
draw(graph(£,0.1,10));

//x1imits(1,10);
//ylimits(0.1,1);

xaxis("x" ,BottomTop,LeftTicks);
yaxis ("y" ,LeftRight,RightTicks);

101 T T TTTTTT[T T T T T TT

T T T 71T
11111

T
1

Yy o100

TTTTTT[
1111111

T
1

10—1 1 1 lllllll 1 1) I
1071 109 10!

T

By extending the ticks, one can easily produce a logarithmic grid:
import graph;
size (200,200, IgnoreAspect) ;

Chapter 7: Base modules 78

real f(real t) {return 1/t;}

scale(Log,Log) ;

draw(graph(f,0.1,10) ,red) ;

pen thin=linewidth(0.5%1linewidth());

xaxis ("x" ,BottomTop,LeftTicks (begin=false,end=false,extend=true,
ptick=thin));

yaxis ("y",LeftRight ,RightTicks(begin=false,end=false,extend=true,
ptick=thin));

10

107}
1071 10° 10

One can also specify custom tick locations and formats for logarithmic axes:
import graph;

size (300,175, IgnoreAspect) ;
scale(Log,Log);
draw(graph(identity,5,20));
x1limits(5,20);
ylimits(1,100);
xaxis ("M/M_\odot",BottomTop,LeftTicks (new reall[] {6,10,12,14,16,18}));
yaxis("$\nu_{\rm upp}$ [Hz]",LeftRight,
RightTicks(new string(real x){return format(powl0(x));}));

Chapter 7: Base modules

100

T T T TT1TT
) S

T

Vupp [Hz]

1 lllllll

T
1

1 x x x x L
6 10 12 14 16 18

M/Me

Here is an example of a "broken" linear x axis that omits the segment [3,8]:
import graph;
size (200,150, IgnoreAspect) ;

// Break the axis at 3; restart at 8.
real a=3, b=8;

scale(Broken(a,b) ,Linear) ;

real[] x={1,2,10};
reall] y=x"2;

draw(graph(x,y) ,red,MarkFill[0]);

xaxis ("x" ,BottomTop,LeftTicks(new real[]{0,1,2,9,10}));
yaxis("y",LeftRight ,RightTicks);

label(rotate(90)*Break, (a,currentpicture.userMin.y)) ;
label (rotate(90)*Break, (a,currentpicture.userMax.y)) ;

79

Chapter 7: Base modules 80

100 I T Q T
80 -
60 — -
40 - -
20 |- -

6. Asymptote can draw secondary axes with the routines

picture secondaryX(picture primary=currentpicture, void f(picture));
picture secondaryY(picture primary=currentpicture, void f(picture));

In this example, secondaryY is used to draw a secondary linear y axis against a primary
logarithmic y axis:

import graph;
texpreamble ("\def\Arg{\mathop {\rm Arg}\nolimitsl}");

size(10cm,5cm, IgnoreAspect) ;

real ampl(real x) {return 2.5/(1+x72);}
real phas(real x) {return -atan(x)/pi;}

scale(Log,Log);
draw(graph (ampl,0.01,10));
ylimits(.001,100);

xaxis ("$\omega\tau_0$",BottomTop,LeftTicks) ;
yaxis("$|G(\omega\tau_0) | $",Left,RightTicks);

picture g=secondaryY(new void(picture pic) {
scale(pic,Log,Linear) ;
draw(pic,graph(pic,phas,0.01,10),red);
ylimits(pic,-1.0,1.5);
yaxis(pic,"$\Arg G/\pi$",Right,red,

LeftTicks("$% #.1£$",
begin=false,end=false));
yequals(pic,1,Dotted) ;
b;
label(q,"(1,0)",Scale(q, (1,0)),red);

Chapter 7: Base modules 81

add(q);

102:5 T T T T TITT T T T T TITT T YTYHH 15

L0 e 1 10
= 3 1 t:
e 10°¢ =4 0.5 EE
3 E]
<l 10*1% (1,0) <002

102 F = 0.5

1073 L ool ool L 11111? _10

1072 1071 10° 10*

WTo

A secondary logarithmic y axis can be drawn like this:

import graph;

size(9cm,6cm, IgnoreAspect) ;
string data="secondaryaxis.csv";

file in=line(csv(input(data)));

string[] titlelabel=in;
string[] columnlabel=in;

real[][] a=dimension(in,0,0);

a=transpose(a);

real[] t=al[0], susceptible=al[l], infectious=al[2], dead=al3], larvae=al4];
real[] susceptibleM=a[5], exposed=al6],infectiousM=al[7];

draw(graph(t,susceptible,t >= 10 && t <= 15));
draw(graph(t,dead,t >= 10 && t <= 15),dashed);

xaxis("Time (τ)",BottomTop,LeftTicks);
yaxis(Left,RightTicks);

picture secondary=secondaryY(new void(picture pic) {
scale(pic,Linear,Log);
draw(pic,graph(pic,t,infectious,t >= 10 && t <= 15),red);
yaxis(pic,Right,red,LeftTicks(begin=false,end=false));
b

add(secondary) ;
label (shift (5mm*N)*"Proportion of crows",point(NW),E);

Chapter 7: Base modules

Proportion of crows

09 T T T T T T T T E 100
07 [///// :
0.5 P ~ 10!
0.3 -]
01 - /1/ | 1 | 1 | 1 | 1 1072
10 11 12 13 14 15
Time (1)

7. Here is a histogram example, which uses the stats module.

import graph;
import stats;

size (400,200, IgnoreAspect) ;

int n=10000;
real[] a=new realln];
for(int i=0; i < n; ++i) al[i]=Gaussrand();

int nbins=100;

real dx=(max(a)-min(a))/(nbins-1);

real[] x=min(a)-dx/2+sequence(nbins+1)*dx;
real[] freq=frequency(x,a);

freq /= (dx*sum(freq));

histogram(x,freq);

draw(graph (Gaussian,min(a) ,max(a)),red);

xaxis ("x" ,BottomTop,LeftTicks);
anis("dP/dX",LeftRight,RightTiCks);

Chapter 7: Base modules

dP/dx

05 T T T T T T

0.4

0.3

0.2

0.1

83

Here is an example of reading column data in from a file and a least-squares fit, using

the stats module.

size (400,200, IgnoreAspect) ;

import graph;
import stats;

file fin=line(input("leastsquares.dat"));

real[] [] a=dimension(fin,0,0);
a=transpose(a);

real[] t=al[0], rho=all]l;

// Read in parameters from the keyboard:
//real first=getreal("first");

//real step=getreal("step");

//real last=getreal("last");

real first=100;
real step=50;
real last=700;

// Remove negative or zero values of rho:
t=rho > 0 7 t : null;

rho=rho > 0 ? rho : null;

scale(Log,Linear);

Chapter 7: Base modules

int n=step > 0 7 ceil((last-first)/step) : O;
real[] T,xi,dxi;
for(int i=0; i <= n; ++i) {
real first=first+i*step;
real[] logrho=(t >= first && t <= last) 7 log(rho)
real[] logt=(t >= first && t <= last) 7 -log(t)

if (logt.length < 2) break;

// Fit to the line logt=L.m*logrho+L.b:
linefit L=leastsquares(logt,logrho);

T.push(first);

xi.push(L.m);
dxi.push(L.dm);

draw(graph(T,xi) ,blue);
errorbars(T,xi,dxi,red);
ylimits(0);

xaxis("T" ,BottomTop,LeftTicks);
yaxis ("ξ",LeftRight,RightTicks) ;

: null;

: null;

0
102

T

9. Here is an example that illustrates the general axis routine.

import graph;

103

84

Chapter 7: Base modules 85

size(0,100);

guide g=ellipse((0,0),1,2);
axis(Label("C",align=10W),g,LeftTicks(endlabel=false,8,end=false),
ticklocate(0,360,new real(real v) {
path h=(0,0)--max(abs(max(g)),abs(min(g)))*dir(v);
return intersect(g,h).x;}));

90
135 45
C 180 0
225 315
270

10. To draw a vector field along a path, first define a routine that returns a path as a
function of a relative position parameter from [0,1] and use

typedef path vector(real);

void vectorfield(picture pic=currentpicture, path g, int n,
vector vector, real arrowsize=0, real arrowlength=0,
pen p=currentpen) ;

Here is a simple example of a flow field:
import graph;
defaultpen(1.0);

size(0,150,IgnoreAspect);

real arrowsize=4mm;
real arrowlength=2arrowsize;

// Return a vector interpolated linearly between a and b.
vector vector(pair a, pair b) {
return new path(real x) {
return (0,0)--arrowlength*interp(a,b,x);
+;
}

real alpha=1;
real f(real x) {return alpha/x;}

real epsilon=0.5;

Chapter 7: Base modules 86

path p=graph(f,epsilon,1/epsilon);

int n=2;
draw(p) ;
xaxis ("x") ;
yaxis("y");

vectorfield(p,n,vector(W,W) ,arrowsize);

vectorfield((0,0)--(currentpicture.userMax.x,0),n,vector (NE,NW),
arrowsize) ;

vectorfield((0,0)--(0,currentpicture.userMax.y) ,n,vector (NE,NE),
arrowsize) ;

"

«

A X

T

11. Asymptote can also generate color density images and palettes. The following palettes
are predefined in palette.asy:

pen[] Grayscale(int NColors=256)
a grayscale palette;

pen[] Rainbow(int NColors=65501)
a rainbow spectrum;

pen[] BWRainbow(int NColors=65485)
a rainbow spectrum tapering off to black/white at the ends;

pen[] BWRainbow2(int NColors=65485)
a double rainbow palette tapering off to black/white at the ends, with a
linearly scaled intensity.

The function cmyk(pen[] Palette) may be used to convert any of these palettes to
the CMYK colorspace. A color density plot can added to a picture pic by generating
from a reall|[] array data, using palette palette, an image spanning the rectangular
region with opposite corners at coordinates initial and final:

void image(picture pic=currentpicture, reall[][] data, pen[] palette,
pair initial, pair final);

An optionally labelled palette bar may be generated with the routine

Chapter 7: Base modules 87

picture palette(real[][] data, real width=Ticksize,
penl] palette, Label L, pen p=currentpen,
paletteticks ticks=PaletteTicks)

The argument paletteticks is a special tick type (see [ticks], page 68) that takes the
following arguments:

paletteticks PaletteTicks(int N=0, real Step=0,
bool beginlabel=true, bool endlabel=true,
Label format="", pen pTick=nullpen);

The image and palette bar can be fit (and optionally aligned) to a frame and
added to picture dest at the location origin using add(pair origin=0, picture
dest=currentpicture, frame):

import graph;
import palette;

int n=256;
real ninv=2pi/n;
real[][] v=new realln][n];
for(int i=0; i < n; ++i)
for(int j=0; j < n; ++j)
v[i] [jl=sin(i*ninv)*cos(j*ninv) ;
pen[] Palette=BWRainbow();

picture plot;

image (plot,v,Palette, (0,0),(1,1));
picture bar=palette(v,5mm,Palette,"A" ,PaletteTicks("$)%+#.1£$"));

add(plot.fit(250,250) ,W);
add((1cm,0) ,bar.fit (0,250),E);

Chapter 7: Base modules 88

+1.0
+0.8
+0.6
+0.4
+0.2
0.0 A
-0.2
—-0.4
-0.6
-0.8

—-1.0

12. The following scientific graphs, which illustrate many features of Asymptote’s graphics
routines, were generated from the examples diatom.asy and westnile.asy, using the
comma-separated data in diatom.csv and westnile.csv.

Chapter 7: Base modules 89
@
&
&
e
& & & N ‘q?\
\;'i)\@ \Qv \é}}@ . d% Q}N
N & N N & 0& &
& S 2 N S &
g IS s QVO Q}‘Q o A&
o \ X) & e
&P S > > 2 >
X & 2 o4 N \\e e &
N3 X& S 0\ Q' Q N (3)
& O < &)&0 N Q RS \)00
<& & <0 o S EAME
& 5 N & o 5O S 20 e°
,;Q' Q)O (%) e N OQ’ %) N N
> o & N A O F AP A
S & <> & B & S
&)~ 59 X & o X R
¥ v ¥ & < O RS
0 2000
C 1998
= 4 1996
C B 1994
= 4 1992
C 171088 1990
c] 1986
E 11984 1982
100f 41980
. C 11978
£ F J1972
= E 41970
< C]
2 200F 3 1965
Q - -
< C]
2 C 3
2 c 11961
£ . 11950
T 300 1040 1942
@ = 9 1920
o 11915 1910
c 1888
400 — 1763
1 1 1 1 1 1 1 1] 1726
50 50 50 40 50 40 40 10
%
1
0.9 frrreeeeeeeees : .
L : 1. Estimate
T:E 0.8 - 3. Determine proportion of
¥ 0.7 i desired bird : birds surviving
= UL survival for : at end of season
= S
< 0.6 - next season
= L
205} 2
R F-~ "~~~ "~~~ T o N 2. Read off
.:% 04 4 Calc.ulate : initial
2 r requn"e(% : | mosquito
S 0.3 B proportional : | abundance
=} reduction in : |
xn 0.2+ .
L mosquitoes :
0.1 : |
r B
O L ! | . | 1l | !

0 10 M, 20 M; 30 40
Initial no. of mosquitoes per bird (Su,/Ng,)

Chapter 7: Base modules 90

7.18 three

This module fully extends the notion of guides and paths in Asymptote to three dimensions,
introducing the new types guide3 and path3, along with a three-dimensional cycle specifier
cycle3, tension operator tension3, and curl operator curl3. Just as in two dimensions, the
nodes within a guide3 can be qualified with these operators and also with explicit directions
and control points (using braces and controls, respectively). This generalization of John
Hobby’s spline algorithm is shape-invariant under three-dimensional rotation, scaling, and
shifting, and reduces in the planar case to the two-dimensional algorithm used in Asymptote,
MetaPost, and MetaFont.

For example, a unit circle in the XY plane may be filled and drawn like this:

import three;

size(100,0);

guide3 g=(1,0,0)..(0,1,0)..(-1,0,0)..(0,-1,0)..cycle3;
filldraw(g,lightgrey);
draw(0--Z,red+dashed,BeginBar,Arrow) ;
draw(((-1,-1,0)--(1,-1,0)--(1,1,0)--(-1,1,0)--cycle3));
dot(g,red);

A

<>

and then distorted into a saddle:

import three;

size(100,0);

guide3 g=(1,0,0)..(0,1,1)..(-1,0,0)..(0,-1,1)..cycle3;
filldraw(g,lightgrey);

dot(g,red);
draw(((-1,-1,0)--(1,-1,0)--(1,1,0)--(-1,1,0)--cycle3));

Here 0 is the triple (0,0,0) and X, Y, and Z are the triples (1,0,0), (0,1,0), and
(0,0,1), respectively. A general circle can be drawn perpendicular to the direction normal
with the routine
path3 circle(triple c, real r, triple normal=Z);

A circular arc centered at c¢ with radius r from c+r*dir(thetal,phil) to
ctrxdir(theta2,phi2), drawing counterclockwise relative to the normal vector
cross(dir(thetal,phil) ,dir(theta2,phi2)) if theta2 > thetal or if theta2 ==
thetal and phi2 >= phil, can be constructed with

Chapter 7: Base modules 91

path3 arc(triple c, real r, real thetal, real phil, real theta2, real phi2,
triple normal=0) ;

The normal must be explicitly specified if ¢ and the endpoints are colinear. If r < 0,
the complementary arc of radius |r| is constructed. For convenience, an arc centered at c
from triple v1 to v2 (assuming |v2-c|=|vi-cl|) in the direction CCW (counter-clockwise)
or CW (clockwise) may also be constructed with
path3 arc(triple c, triple v1, triple v2, triple normal=0,

bool direction=CCW);
When high accuracy is needed, the routines Circle and Arc defined in graph3 may be used
instead. See [surface|, page 98 for an example of a three-dimensional circular arc.

A representation of the plane passing through point O with normal cross(u,v) is given
by
path3 plane(triple u, triple v, triple 0=0);

A three-dimensional box with opposite vertices at triples vl and v2 may be drawn with
the function
guide3[] box(triple v1, triple v2);

For example, a unit cube is predefined as
guide3[] unitcube=box((0,0,0),(1,1,1));

These projections to two dimensions are predefined:

oblique The point (x,y,z) is projected to (x-0.5z,y-0.5z). If an optional real argu-
ment is given to oblique, the negative z axis is drawn at this angle in degrees
measured counterclockwise from the positive x axis.

orthographic(triple camera)

orthographic(real x, real y, real z)
This projects three dimensions onto two using the view seen at the location
camera or (x,y,z), respectively. Parallel lines are projected to parallel lines.

perspective(triple camera)

perspective(real x, real y, real z)
These project three dimensions onto two taking account of perspective, as seen
from the location camera or (x,y,z), respectively.

The default projection, currentprojection, is initially set to perspective(5,4,2).
It is occasionally useful to be able to invert a projection, sending a pair z onto the plane
perpendicular to normal and passing through point:
triple invert(pair z, triple normal, triple point,
projection P=currentprojection);
Three-dimensional objects may be transformed with one of the following built-in
transform3 types:

shift(triple v)
translates by the triple v;

xscale3(real x)
scales by x in the = direction;

Chapter 7: Base modules 92

yscale3(real y)
scales by y in the y direction;

zscale3(real z)
scales by z in the z direction;

scale3(real s)
scales by s in the z, y, and z directions;

rotate(real angle, triple v)
rotates by angle in degrees about an axis v through the origin;

rotate(real angle, triple u, triple v)
rotates by angle in degrees about the axis u--v;

reflect(triple u, triple v, triple w)
reflects about the plane through u, v, and w.

Three-dimensional versions of the path functions length, size, point, dir, precontrol,
postcontrol, arclength, arctime, reverse, subpath, intersect, intersectionpoint,
min, max, cyclic, and straight are also defined in the module three.

Planar hidden surface removal is implemented with a binary space partition and picture
clipping. A planar path is first converted to a struct face derived from picture. A face
may be given to a drawing routine in place of any picture argument. An array of such
faces may then be drawn, removing hidden surfaces:

void add(picture pic=currentpicture, facel[] faces,
projection P=currentprojection);

Here is an example showing three orthogonal intersecting planes:

size(6cm,0);
import math;
import three;

real u=2.5;
real v=1;

currentprojection=oblique;

path3 y=plane((2u,0,0),(0,2v,0), (-u,-v,0));
path3 l=rotate(90,Z)*rotate(90,Y)*y;
path3 g=rotate(90,X)*rotate(90,Y)*y;

face[] faces;
filldraw(faces.push(y),y,yellow);
filldraw(faces.push(l),1,lightgrey);
filldraw(faces.push(g),g,green);

add(faces);

Chapter 7: Base modules

Here is an example showing all five 3D path connectors:

import graph3;

size(0,175);
currentprojection=orthographic(500,-500,500) ;
triple[] z=new triple[10];

z[0]=(0,100,0); z[1]1=(50,0,0); z[2]1=(180,0,0);

for(int n=3; n <= 9; ++n)
z[n]=z[n-3]+(200,0,0);

path3 p=z[0]..z[1]---z[2]::{Y}z[3]
&z[3]..z[4]--z[5]::{Y}z[6]
&z[6]::z[7]-—-2z[8]..{Y}=z[9];

draw(p,grey+linewidth (4mm)) ;

bbox3 b=1limits (0, (700,200,100));

xaxis(Label("x",1),b,red,Arrow);

yaxis(Label ("y",1) ,b,red,Arrow);

zaxis(Label("z",1) ,b,red,Arrow);

dot(z);

93

Chapter 7: Base modules 94

T

A three-dimensional bounding box structure is returned by calling bbox3(triple min,
triple max) with the opposite corners min and max. This can be used to adjust the aspect
ratio (see the example helix.asy):
void aspect(picture pic=currentpicture, bbox3 b,

real x=0, real y=0, real z=0);

Further three-dimensional examples are provided in the files near_earth.asy,

conicurv.asy, and (in the animations subdirectory) cube.asy.

7.19 light

This module provides a simple implementation of three-dimensional lighting effects. An
illustration is provided in the example file sphere.asy.

7.20 graph3

This module implements three-dimensional versions of the functions in graph.asy. They
work much like their two-dimensional counterparts, except that the user has to keep track
of the three-dimensional axes limits (which in two dimension are stored in the picture) in a
bbox3 bounding box. The function

bbox3 autolimits(picture pic=currentpicture, triple min, triple max);
can be used to determine “nice” values for the bounding box corners. A user-space bounding
box that takes into account of the axes scalings for picture pic is returned by
bbox3 limits(picture pic=currentpicture, triple min, triple max);
To crop a bounding box to a given interval use:
void xlimits(bbox3 b, real min, real max);
void ylimits(bbox3 b, real min, real max);
void zlimits(bbox3 b, real min, real max);
void limits(bbox3 b, triple min, triple max);
To draw an z axis in three dimensions from triple min to triple max with ticks in the
direction dir, use the routine

Chapter 7: Base modules 95

void xaxis(picture pic=currentpicture, Label L="", triple min, triple max,
pen p=currentpen, ticks ticks=NoTicks, triple dir=Y,
arrowbar arrow=None, bool put=Above,
projection P=currentprojection, bool opposite=false);

To draw an x axis in three dimensions from triple min to triple (max,min.y,min.z) with
ticks in the direction dir, use the routine

void xaxis(picture pic=currentpicture, Label L="", triple min, real max,
pen p=currentpen, ticks ticks=NoTicks, triple dir=Y,
arrowbar arrow=None, bool put=Above,
projection P=currentprojection, bool opposite=false);

To draw an z axis in three dimensions using bbox3 b with ticks in the direction dir, use
the routine

void xaxis(picture pic=currentpicture, Label L="", bool all=false,
bbox3 b, pen p=currentpen, ticks ticks=NoTicks,
triple dir=Y, arrowbar arrow=None, bool put=Above,
projection P=currentprojection);

If all=true, also draw opposing edges of the three-dimensional bounding box. Analogous
routines yaxis and zaxis can be used to draw y and z axes in three dimensions.

Here is an example of a helix and bounding box axes with rotated tick and axis labels,
using orthographic projection:

import graph3;

size(0,200);

currentprojection=orthographic(4,6,3);

real x(real t) {return cos(2pix*t);}

real y(real t) {return sin(2pix*t);}

real z(real t) {return t;}

defaultpen(overwrite (SuppressQuiet));

path3 p=graph(x,y,z,0,2.7,Spline);

bbox3 b=autolimits(min(p) ,max(p));

aspect(b,1,1,1);

xaxis(rotate(X)*"x",all=true,b,red,RightTicks (rotate(X)*Label,2,2));
yaxis(rotate(Y)*"y",all=true,b,red,RightTicks (rotate(Y)*Label,2,2));

zaxis ("z",all=true,b,red,RightTicks);

draw(p,Arrow) ;

Chapter 7: Base modules 96

The next example illustrates three-dimensional z, y, and z axes, with autoscaling of the
upper z limit disabled:

import three;

import graph;

import graph3;

size (0,200, IgnoreAspect) ;
currentprojection=perspective(5,2,2);
defaultpen(overwrite (SuppressQuiet));
scale(Linear,Linear,Log(automax=false));
bbox3 b=autolimits(Z,X+Y+30Z);

xaxis ("x",b,red,RightTicks(2,2));

yaxis("y",b,red,RightTicks(2,2));
zaxis ("z",b,red,RightTicks);

Chapter 7: Base modules

10!
z
Y
N e L
0.5

One can also place ticks along a general three-dimensional axis:

import graph3;
size(0,100);
path3 G=xscale3(1)*(yscale3(2)*unitcircle3);

axis(Label("C",align=Relative(5E)),G,
LeftTicks(endlabel=false,8,end=false),
ticklocate(0,360,new real(real v) {
path g=G;
path h=0--max(abs(max(G)),abs(min(G)))*dir(90,v);
return intersect(g,h).x;
},perpendicular(G,Z)));

270 2925 C

45 90

97

Chapter 7: Base modules 98

Surface plots of functions and matrices over the region box(a,b) in the XY plane are
also implemented:

// draw the surface described by a matrix f, with lighting
picture surface(reall[][] f, pair a, pair b,

pen surfacepen=lightgray, pen meshpen=nullpen,

light light=currentlight, projection P=currentprojection);
// draw the surface described by a function f, with lighting
picture surface(real f(pair z), pair a, pair b, int n=nmesh, int m=n,

pen surfacepen=lightgray, pen meshpen=nullpen,

light light=currentlight, projection P=currentprojection)
// draw the surface described by f, subsampling nsub times along cell edges
picture surface(real f(pair z), int nsub, pair a, pair b, int n=nmesh,

int m=n, pen surfacepen=lightgray, pen meshpen=currentpen,
projection P=currentprojection);

Here is an example of a Gaussian surface subsampled 4 times:

import graph3;

size(200,0);
currentprojection=perspective(5,4,2);

real f(pair z) {return 0.5+exp(-abs(z)"2);}
draw((-1,-1,0)--(1,-1,0)--(1,1,0)--(-1,1,0)--cycle3);
draw(arc(0.12Z,0.2,90,60,90,15) ,ArcArrow) ;
picture surface=surface(f,4,(-1,-1),(1,1),10);
bbox3 b=1imits(0,1.75(1,1,1));

xaxis(Label ("x",1),b,red,Arrow);
yaxis(Label("y",1),b,red,Arrow) ;
zaxis(Label("z",1),b,red,Arrow);

label("0", (0,0,0),S,red);

add(surface) ;

Chapter 7: Base modules 99

Surface lighting is illustrated in the example file sinc.asy.

7.21 solids

This is the beginnings of a solid geometry package. The following example uses it to display
the outline of a circular cylinder of radius 1 and height 1.5 aligned in the direction (0,1,1)
with perspective projection:

import solids;
size(0,100);

guide3[] g=cylinder(circle(0,1,Z),1.5,Z+Y);
draw(g) ;
triple M=max(g);

xaxis(Label ("x",1),0,M.x,red,Below);
yaxis(Label("y",1),0,M.y,red,Below);
zaxis(Label("z",1),0,M.z,red,Below);

z

7.22 featpost3D

To facilitate the conversion of existing MetaPost programs, this module contains a par-
tial port of the MetaPost 3D package featpost3D of L. Nobre G., C. Barbarosie, and J.

Chapter 7: Base modules 100

Schwaiger to Asymptote. However, much (but not all) of the functionality of this port is
now obsoleted by the general package three, which fully extends the notion of a path to
three dimensions. The original package is documented at

http://matagalatlante.org/nobre/featpost/doc/featpost.html

http://matagalatlante.org/nobre/featpost/doc/featpost.html

Chapter 8: Options 101

8 Options

Type asy -h to see the full list of command line options supported by Asymptote:
Usage: asy [options] [file ...]

Options:

-V,-View View output files

-a,-align CIB|T|Z Center, Bottom, Top, or Zero page alignment; Z => -notex
—autoplain Enable automatic importing of plain (default)
-batchMask Mask fpu exceptions in batch mode

-batchView View output files in batch mode

-bw Convert all colors to black and white
-c,-clearGUI Clear GUI operations

-cmyk Convert rgb colors to cmyk

-d,-debug Enable debugging messages

-X,-deconstruct X Deconstruct into transparent GIF objects magnified by X
-gray Convert all colors to grayscale

-h,-help Show summary of options

-historylines n Retain n lines of history (default 1000)
-i,-ignoreGUI Ignore GUI operations

-inlinetex Generate inline tex code

-interactiveMask Mask fpu exceptions in interactive mode
-interactiveView View output files in interactive mode
-k,-keep Keep intermediate files

-1,-listvariables List available global functions and variables
—-localhistory Use a local interactive history file
-m,-mask Mask fpu exceptions

-0,-offset pair PostScript offset

-f,-outformat format Convert each output file to specified format
-0,-outname name (First) output file name

-p,-parseonly Parse test

-rgb Convert cmyk colors to rgb

-safe Disable system call (default)

-tex Enable LaTeX label postprocessing (default)
-s,-translate Translate test

-unsafe Enable system call

-v,-verbose Increase verbosity level

All boolean options, except for —unsafe and -safe, can be negated by prepending no
to the option name.

If no arguments are given, Asymptote runs in interactive mode (see Chapter 9 [Interactive
mode|, page 103). In this case, the default output file is out.eps.

If - is given as the file argument, Asymptote reads from standard input.
If multiple files are specified, they are treated as separate Asymptote runs.

Default option values may be entered as Asymptote code in a configuration file named
config.asy (or the file specified by the environment variable ASYMPTOTE_CONFIG or —~config

Chapter 8: Options 102

option). Asymptote will look for this file in its usual search path. Typically the configuration
file is placed in the .asy directory in the user’s home directory (4USERPROFILEY,/ .asy under
MSDOS). Configuration variables are accessed using the long form of the option names:
import settings;

View=true;

Command-line options override these defaults. Configuration variables may also be
changed at runtime.

An alternative output format (without antialiasing) may be produced by using the -f
format option. This supports any format supported by the ImageMagick convert program
(version 6.2.4 or later recommended). To give specific options to the convert program, call
convert manually. This example enables antialiasing and produces a tiff format at double
the usual size:

asy -o - venn | convert -density 288x288 -geometry 100%x eps:- venn.tiff

If the option -unsafe is given, Asymptote runs in unsafe mode. This enables the int
system(string) call, allowing one to execute arbitrary shell commands. The default mode,
-safe, disables this call.

A PostScript offset may be specified as a pair (in bp units) with the -0 option:
asy -0 0,0 file

The default offset is zero. The offset is adjusted if it would result in a negative vertical
bounding box coordinate.

Additional debugging output is produced with each additional -v option:
-V Display top-level module and final output file names.

-vv Also display imported and included module names and final LaTeX and dvips
processing information.

A Also output LaTeX bidirectional pipe diagnostics.
-VVVV Also output knot guide solver diagnostics.

SAA'A'AY Also output Asymptote traceback diagnostics.

Chapter 9: Interactive mode 103

9 Interactive mode

Interactive mode is entered by executing the command asy with no file arguments. Each
line must be a complete Asymptote statement; however, it is not necessary to terminate
each line with a semicolon.

The following special commands are supported only in interactive mode and must be
entered immediately after the prompt:

help view the manual

reset reset Asymptote to its initial state, except that a prior call to scroll (see
[scroll], page 45) and any changes to the setting outname are respected.

input FILE
resets the environment and does an erase(); include FILE. If the file name
FILE contains nonalphanumeric characters, enclose it with quotation marks.
For convenience, a trailing semi-colon followed by optional Asymptote com-
mands may be entered on the same line.

quit exit interactive mode (abbreviated as q; exit is a synonym). A history of
the most recent 1000 (can be changed with the historylines command-line
option) previous commands will be retained in the file .asy/history in the
user’s home directory (unless the command line option -localhistory was
specified, in which case the history will be stored in the file .asy_history in
the current directory).

Typing ctrl-C interrupts the execution of Asymptote code and returns control to the
interactive prompt.

Interactive mode is implemented with the GNU readline library. To customize the key
bindings, see: http://cnswww.cns.cwru.edu/php/chet/readline/readline.html

http://cnswww.cns.cwru.edu/php/chet/readline/readline.html

Chapter 10: Graphical User Interface 104

10 Graphical User Interface

In the event that adjustments to the final figure are required, the Graphical User Interface
(GUI) xasy included with Asymptote allows you to move graphical objects around with
mouse Button-1.

To use xasy, one must first deconstruct Asymptote pictures into transparent GIF images
with the command asy -xN, where N denotes the magnification (a positive real number, say
2). The command asy -VxN automatically invokes xasy once deconstruction is complete.
Alternatively, one may turn on the -xN option in interactive mode or from within a module
using the function gui() or gui(N). Omne can turn GUI mode off again with gui(0).
Deconstruction requires that the ImageMagick convert utility be installed.

The modified layout can be written to disk with the w key in a form readable to
Asymptote. A wheel mouse is convenient for raising and lowering objects, to expose the
object to be moved. If a wheel mouse is not available, mouse Button-2 (lower) can be used
repeatedly instead. Here are the currently defined key mappings:

z undo
T redo
<Delete> delete

W write

q quit
One can also draw connected line segments by holding down the shift key and pressing

mouse Button-1 at each desired node. Releasing the shift key ends the definition of the
path. More features will be added to this preliminary GUI soon.

As xasy is written in the interactive scripting language Python/TK, it requires that both
Python and the tkinter package be installed (included with Python under MSD0S). Under
Fedora Core 4, you can either install tkinter with the command

yum install tkinter
or manually install the individual packages:
rpm -i tkinter-2.4.1-2.i386.rpm
rpm -U --nodeps tix-8.1.4-100.1386.rpm
rpm -U --nodeps tk-8.4.9-3.1i386.rpm
Deconstruction of compound objects (such as arrows) can be prevented by enclosing
them within the commands
void begingroup(picture pic=currentpicture);
void endgroup(picture pic=currentpicture);
By default, the elements of a picture or frame will be grouped together on adding them
to a picture. However, the elements of a frame added to another frame are not grouped
together by default: their elements will be individually deconstructed (see [add], page 28).

Chapter 11: PostScript to Asymptote 105

11 PostScript to Asymptote

The excellent PostScript editor pstoedit (version 3.44 or later; available from
http://pstoedit.net) includes an Asymptote backend. Unlike virtually all other
pstoedit backends, this driver includes native clipping, even-odd fill rule, PostScript
subpath, and full image support.

For example, try:

asy -V /usr/share/doc/asymptote/examples/venn.asy

pstoedit -f asy venn.eps test.asy

asy -V test

If the line widths aren’t quite correct, try giving pstoedit the -dis option. If the fonts
aren’t typeset correctly, try giving pstoedit the -dt option.

http://pstoedit.net

Chapter 12: Help 106

12 Help

Questions on installing and using Asymptote should be sent to the Asymptote forum.
http://sourceforge.net/forum/forum.php?forum_id=409349

Contributions in the form of patches or Asymptote modules can be posted here:
http://sourceforge.net/tracker/7atid=685685&group_id=120000

To receive announcements of upcoming releases, please subscribe to Asymptote at
http://freshmeat.net/subscribe/50750

If you find a bug in Asymptote, please check (if possible) whether the bug is still present in
the latest CVS version before submitting a bug report. New bugs can be submitted using
the Bug Tracking System at

http://sourceforge.net/projects/asymptote
To see if the bug has already been fixed, check bugs with Status Closed and recent lines in
http://asymptote.sourceforge.net/Changelog
Asymptote can be configured with the optional GNU library 1ibsigsegv, available from
http://libsigsegv.sourceforge.net, which allows one to distinguish user-generated
Asymptote stack overflows (see [stack overflow]|, page 38) from true segmentation faults

(due to internal C++ programming errors; please submit the Asymptote code that generates
such segmentation faults along with your bug report).

http://sourceforge.net/forum/forum.php?forum_id=409349
http://sourceforge.net/tracker/?atid=685685&group_id=120000
http://freshmeat.net/subscribe/50750
http://sourceforge.net/projects/asymptote
http://asymptote.sourceforge.net/ChangeLog
http://libsigsegv.sourceforge.net

Chapter 13: Acknowledgments 107

13 Acknowledgments

Financial support for the development of Asymptote was generously provided by the Natural
Sciences and Engineering Research Council of Canada, the Pacific Institute for Mathemat-
ical Sciences, and the University of Alberta Faculty of Science.

We also would like to acknowledge the previous work of John D. Hobby, author of the
program MetaPost that inspired the development of Asymptote, and Donald E. Knuth,
author of TEX and MetaFont (on which MetaPost is based).

The authors of Asymptote are Andy Hammerlindl, John Bowman, and Tom Prince.
Sean Healy designed the Asymptote logo.

Index

Index
!
b 35
D 34
%
/2 34
/A 35
&
& 15
& 35
*
K 20, 34
KK 34
K 35
+
o 20, 34
o 35
B 35
A 34
M 13, 35
e 15
T 35
TV 3,7
.. 13
A et 4
[34
[35
... 35
.. 15
<
D 34
o 34

108
T e 34
>
D 35
D 35
?
B e 35
e 34, 35
102 35
P 16
PP 35
2
2D graphs. ... o 66
3
3D graphs. 94
ADS e i 10, 41
BCCES S . i ot et 46
acknowledgments 107
BCOS .+ttt e e 40
AC0S . i 41
acosh. ... 40
add .. 28
alias. ... 43
ALIOW . .ottt 25
ANA . 15
angle........... 10
animation 9
antialiasing.............. 102
APPENA . . 31, 41
ATCATTOW. ..o 51
AYCATTOWS ..ttt e e 51
arclength............................... 18, 92
arctime 18, 92
arguments. 38
arithmetic operators 34
ATTAYS .+ v ettt et e 41

Index

Arrow. 51
ATTows 51
B L e 48
ASIN . .o 40
ASIN . .o 41
asinh....... ... 40
ASPECT . ottt 94
Aspect. ... 27
assignment oL 9
asy-mode............... . 5
ASY.VIM. ...t 5
asymptote.sty 58
ASYMPTOTE_CONFIG.......................... 101
atan. ... 40
ATAN . ottt 41
atan2.......... 40
atanh....... 40
atleast........... i 15
attach.......... 73
autolimits L il 94
automatic scaling 76
axial shading 53
AXIS . i 82, 84, 96, 97
azimuth........... L 11

babel..... 65
Bar 51
Bars...... ... 51
base modules................ 63
basealign 22
baseline......... i 55
baselineskip L. 22
batchmode 7
bboX3 . .. 94
BeginArcArrow............. 51
BeginArrow, 51
BeginBar............... 51
BeginDotMargin............................. 51
BeginMargin 51
BeginPenMargin............................. 51
BeginPoint L. 54
beveljoin 21
binary operators.............. 34
Blank....... 51
bool 9
boolean operators..................... 34
Bottom.........o.ouiii 67
BottomTopcovvii 68
DOX oot 27
DD 7
break....... 9
brick. 23
broken axiS.coviiiiiiii 79
bug reports 106
Button-1 104
Button-2 L 104

109
BWRainbow 86
BWRainbow2 86
C
Cstring ... 12
CASES . .ot 45
chrt ... 40
Cd ot 31
Ceil oo 41
Center. ..ot 54
checker 23
Chinese 65
circle. 13
CIK 65
Clear . ..ot 31
Clip. oo 54
<3 8
CIYK ..o 20
colatitude 11
COlOT . o 20
COLOTS . ottt e 20
comma-separated-value....................... 45
command-line options 3, 101
comment character........................... 31
Compiling from UNIX source.................. 4
complementiiiiiiiiii 42
COMCAT . ot ettt et e e e 43
conditional 9, 35
config........ ... 101
configuration file.......... o o L 3
configuring 3
o7 < g 10
constructors............ il L 33
continue............... il 9
controls 15, 90
CONVETTL .o ovti it 9, 102
COPY « v e et e e 43
O v ettt e e 40
COS ettt 41
cosh..... .. 40
[o 75
cropping graphs 75
CTOSS © ittt ittt e 11, 74
crosshatch.......... L. 23
OBV et e 45
CUbicroots 44
CUTL .o 16
CUT LS . 90
CUrTENtPEN . ..ottt 20
currentprojection..............., 91
custom axis types............... L 68
custom tick locations...................... ... 69
OV S 6
cyCle ... 7,13
cycled . .. 90
cyclic.... 19, 41, 92

Index

Cyrillic ... 65

D

dashdotted 20
dashed....... ...t 20
data types. 9
Debian........... 2
declaration 9
default arguments 38
defaultpen....................... 20, 21, 22, 25
degrees..........iiiiiii 10
description 1
dimensioniiiiiiiii 45
Air ... 4,10, 11, 17, 92
directory ... 31
dirtime.......... i 18
AO e 9
Aot . oot 11, 52
DotMargin, 51
DotMarginsc.oiuiiiiiianann .. 51
dotted........... 20
double............ ... 31
draw i 51, 52
drawing commands 51
drawline............... ... 63
drawtree............ i 64

E

Editing modes 5
€lSE . e 9
CINACS .« v v vt e ettt 5
embed 66
EndATrCATTOW ... 0o vt 51
EndArrow.ot 51
EndBar.t 51
EndDotMargin, 51
endl ... 31
EndMargin i 51
EndPenMargin 51
EndPoint........ .ot 54
environment variables......................... 3
0L o o 31, 45
€0L. . 31, 45
EPS . 55
@YASE .ottt 12, 30
erf .. 40
erfc . .. 40
[T e Pt 31
erTOYDATS ..ot 74
EVAL .ot 48
evenodd. 16
evenodd. 21
evenoddoverlapo.iiiiaiai.. 21
examples. ... 7
EXECULE . . .t 48
XAt . 103

110
XD et 40
XDl .. 10, 11
explicit....... ... i 45
explicit casts 46
extendcap i 21
extensionol 63
F
fabs 40
face 92
featpost3D 99
feynman.............. 64
e i 44
file ... o 30
Fill 52, 53
Fill oo 28, 51
filldraw.t 53
fillrule. 21
find ... 12, 42
firstecut....... 19
T 27
£l00T . oo 41
flush..... ... 31
fmod. 40
font 22
font command................ L. 22
fontcommand L.l 22
fontsize......... il 22
for . .. 9
format 13, 102
forum.......... 106
frame........ 26
From. ..ot 47
function declarations......................... 37
functions 37, 40
G
GAMMA . . o eevt ettt et e e e e 40
GaussSTandoiiii e 41
BEOMELTY . oottt ettt 64
BeLC . o 31
getreal........ 32
getstring 32
gifmerge........ 9
Gouraud shading 53
gradient shading............................. 53
graph........ ... 66
graph3....... 94
graphical user interface...................... 104
BLaAY o ot 20
grayscale........ 20
Grayscaleoiiiiiiii 86
grid ... 23, 77
B e 3
GUI e 104

Index

hatch 23
help.. ..o 103
help ... 106
hidden surface removal 92
histogram 41
RYyPOt ..ot 40

I

identityl 26, 40
s 9
IgnoreAspectooiiiiiii 27
ImageMagick............................. 9, 102
implicit casts.......... ... 45
implicit linear solver 63
implicit scaling L 36
import. ... 47
inches...... 8
include...... ... 55
including images 55
inheritance L 33
input ... 30, 103
insert....... .. 12
inside 19, 92
installation.......... L. 2
Int ... 9
integer division L. 34
interactive mode............ 103
international characters 65
intersect.......... L. 18, 63, 92
intersection........... 63
intersectionpoint............ 19
intersectpointol 92
INVErSe. ..ottt 26
invert...... ... 91
invisible 20

K

keywords. 38
Korean 65

label 54
Labelo 52
Label 71
labelx. 71

111
landscape model 27
lastcut. ... 19
LaTeX fonts............. 22
LaTeX USAZEe . . o oottt et 58
latinl.. ... 65
latitude......... i 11
lattice shading............ 53
dayer . e 51
leastsquares..............couuiinain.... 64, 83
Left ... oo 70
LeftRight 70
LeftSide........ ... i 54
LeftTicks ... 72
legend L 51
length..................... 10, 11, 12, 17, 41, 92
libmroutines.......... 40
libsigsegv................ 38, 106
TEGRE . oo 94
1imits oo 75, 94
line . ..o 45
linemodeo i 45
Linear...... ... 76
1iNeCaAD . .ttt 21
linejoin....... i 21
linesKip. . ..o 22
linewidth 21
L0 e e 40
LOg oot 76
log-log graph 7
1ogl0. .o 40
logarithmic graph............................ T
logical operators................... 34
longdashdotted 20
longdashed 20
longitudet 11
Longitude 11
lOOD v v 9
M
MacOS X binary distributions 2
MAKEPEI. . oottt et et 24
1 E= o 43
Margin.......... 51
Margins.............. ... 51
Mmarkerouiuii i 74
marknodesiiiiiiiii 74
markuniform..............l 74
math......... oo 63
mathematical functions 40
MAX « v ettt et e 19, 43, 92
maxbound L 10, 12
MELEE . ot e et e e e e 9
MetaPost.......... i 65
MetaPost il 15
MetaPost cutafter 19
MetaPost cutbefore......................... 19
MetaPost pickup 20

Index

MetaPost whatever 63
Microsoft Windows 2
MidATTOW. . oottt e e 51
MidPoint........ ..o 54
MiN .ot 19, 43, 92
minbound L il 10, 11
minipage............. i 55
miterjoin 21
11 8
TNOUSE &« v ovoet e e et e et et e et et 104
MOV . vttt e 25
MoveQuietcooiuinii 25

named arguments i ... 38
TLEW . oottt e e e e 32, 42
newframe........... 26
NESS . 22
nobasealign, 22
NOFAlL oo 28, 51
NoMargin.............oouiiiniiininainann.... 51
TIOMIE . o v oottt et e e e e e e e e 31
NOmE ..ottt 51
NOTiCKS . ..ot 68
nullpencoouiiiiiiiinainain.. 28, 54

@)

oblique....... ... 91
offset ... 102
[013 30
OPETALOT . .ottt 35
Operator ——.......... .. 66
Operator i 66
operatorcast oL 46
operator ecast i 46
operator init..............l 32
operators. i 34
options 101
orthographic 91
output....... 31
overwrite i 25

packing ... 39
PAlr ... 10
palette.......... 64
PAPETtYPe. ..ot 3
parametrized curve 75
Path. ... 13
pathll ... 16
patterns........... L 23
patterns.................. ... 64
pdfviewer....... 3
POIL . ottt e 20

112
PenMargins 51
perpendicular.................. 64
perspective. 91
picture.......... 26
picture alignment 27
Plain........ .. 63
point 17, 92
polar......... ... 11
Polygom. ... 74
o 2e) o 2 41
portrait mode 27
postcontrol 18, 92
postfix operators.................. ... 35
postscript 30
PostScript fonts, 22
PostScript subpath 16
PowlO. ... 40
precision il 31
precontrol.............. 18, 92
prefix operators. i 35
private............ .. 32
ProOgrammingouueunein e 9
psviewer................. .. 3
P 8
public......... 32
Push.... ... 41
Q
quadraticrootsiiia. 44
quit..... .. 103
quotient............ 34
R
radial shading 53
RadialShade(pen penc, pen penr) 28
Rainbow.......... 86
TaNd . .. 41
randMax.t 41
readl. 45
read2.t 45
read3. 45
reading L 30
readline............ 32
real 9
TECUISION . .. ov vttt 38
reflect. ... 26
Relative........ ..., 54
remainder 40
replace. 13
resetdefaultpen............................ 25
rest arguments L L 39
TESEOTE@. ..o 30
TEVEISE ..ot 12, 18, 42, 92
Tewind 31
rfind.. 12
Tgb .. 20

Index

RAGHE oot 70
RightSide 54
RightTicks, 72
TOUNd . ..ot 41
TOUNACAD . . oot 21
roundedpath, 65
roundjoin i 21
Russian.............. 65

SAVE L ettt e e 30
SCale ... 26, 76
scaled. 92
scientific graph o o L 72
SCroll. ... 45
search............ .. 42
search paths............ 4
seascape Mode. 27
secondary axiS...............iiiiiiiiaaaa. 80
secondaryX i 80
secondaryYl 80
SEEK . .. 31
segmentation fault 106
self operators........... 35
SEQUENCE . . o ettt ettt e 42
settings i 3
==« 41
shading 53
shift ... 26, 91
shipout......... 27
simplex......... 63
SIN ..o 40
Sin .. 41
single........ ... 31
sinh...... 40
size.......... il 17, 27, 92, 102
Slantitiiii 26
Slice. ..o 19
Solid. ... 20
solids........ 99
SOLVE ..o 63, 64
SOTE ettt 43
Spline....... 66
SATE oot 40
SQUATECAD « - e vveveee e e 21
STANA . .ottt 41
stack overflow.......... 38, 106
static...... ... 49
Stats 64
stdin. L 31
stdout........ 31
straight............ 19, 64, 92
Straight............ 66
string............. L 12
struct.......... 32
structures Lo 32

subpath 18, 92

113
subpictures........... ... i 27
SubsStr. 12
SUM .« oottt ettt e e e 43
superpath 16
SUPPTESS. .ot 25
SuppressQuiet 25
T
tab. .. 31
BaAD . . 40
Tan .o 41
tanh. 40
tell ... 31
tension........... ... i 15
tension3....... 90
X 30
TeX fonts. ... 22
TEX string ... 12
texpreamble 30
textbook graph............, 71
this... 32
three...... 90
tick. .o 71
ticks ... 68
tile .o 23
tlngs. .o 23
time.... ... 13
TOD - e ettt e 67
transform.............. L.l 25, 91
transpose i 43
tree 64
triangle..........l 64
tridiagonal 44
triple...... 11
TrueMargin 51
typelem. ... 22
typedef 13, 37
U
unfill 53
UnFill. 28
UnFill(real xmargin=0, real ymargin=xmargin

.. 28
unicode..........l 65
Uninstall ... o 6
URIT oot 10, 11
unitcircle 13
unitsize............ . 8
UNIX binary distributions..................... 2
unpacking 40
unravel. 47
user coordinates 8
user-defined operators........................ 35

Index

A%

vector field......... i 85
verbatim 30
2 | 5
virtual functions 33
VOId .ottt 9

wheel mouse 104
While 9
write 31, 45

KASY « e vt e e 104
Xaxis......... 94
XequalsS......ouiii 70
XEQUals.....oovni i 69
Xinput............. 31
X1AmitS .o 75, 94
xoutput........ 31
XPArt ... 10, 11

XSCALE .\ ottt 26

114
xscaled. 91
xtick. ... 71
XZETO . o 69
Y
D 40
VaXisS. ... 94
yequals.t 70
YEQUALS. .. .ovttiii e 67
ylimits 75, 94
YPATt . 10, 11
yscale. ... 26
yscaled. 92
ytick. ..o 71
YZeTo. ..o 67
Z
ZAKIS .t 94
zerowinding 21
zerowindingoverlap......................... 21
zZlimits. ... 94
ZPATT o oo 11
zscale3. 92

	Description
	Installation
	UNIX binary distributions
	MacOS X binary distributions
	Microsoft Windows
	Configuring
	Search paths
	Compiling from UNIX source
	Editing modes
	CVS
	Uninstall

	Examples
	Programming
	Data types
	Guides and paths
	Pens
	Transforms
	Frames and pictures
	Files
	Structures
	Operators
	Arithmetic & logical operators
	Self & prefix operators
	User-defined operators

	Implicit scaling
	Functions
	Default arguments
	Named arguments
	Rest arguments
	Mathematical functions

	Arrays
	Casts
	Import
	Static

	Drawing commands
	draw
	fill
	clip
	label

	LaTeX usage
	Base modules
	plain
	simplex
	math
	geometry
	stats
	patterns
	palette
	tree
	drawtree
	feynman
	roundedpath
	MetaPost
	unicode
	latin1
	babel
	embed
	graph
	three
	light
	graph3
	solids
	featpost3D

	Options
	Interactive mode
	Graphical User Interface
	PostScript to Asymptote
	Help
	Acknowledgments
	Index

