Distributed Programming
with Ice

Michi Henning
Mark Spruiell

With contributions by

Dwayne Boone, Brent Eagles, Benoit Foucher,
Marc Laukien, Matthew Newhook, Bernard Normier

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book and ZeroC was aware of the trademark claim,
the designations have been printed in initial caps or all caps. The authors and publisher have taken care
in the preparation of this book, but make no expressed or implied warranty of any kind and assume no
responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or programs contained herein.

This manual is provided under one of two licenses, whichever you prefer:

¢ the Creative Commons Attribution-No Derivative Works 3.0 Unported License
(http://creativecommons.org/licenses/by-nd/3.0/). This license does not permit you make modifications.

* the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License
(http://creativecommons.org/licenses/by-nc-sa/3.0/). This license permits you to make modifications. If
you distribute this manual under this license, you must prominently include the following text:

This document is derived from “Distributed Computing with Ice”, Copyright © ZeroC, Inc. 2003-2010.
You can find the latest version of “Distributed Computing with Ice” at
http:/fwww.zeroc.com/Ice-Manual.pdf.

Copyright © 2003-2010 by ZeroC, Inc.
mailto:info@zeroc.com
http://www.zeroc.com

Revision 3.4, June 2010

This revision of the documentation describes Ice version 3.4.1.

The Ice source distribution makes use of a number of third-party products:

* Berkeley DB, developed by Oracle (http://www.oracle.com)

* bzip2/libbzip2, developed by Julian R. Seward (http://sources.redhat.com/bzip2)

* The OpenSSL Toolkit, developed by the OpenSSL Project (http://www.openssl.org)
» SSLeay, developed by Eric Young (mailto:eay @cryptsoft.com)

» Expat, developed by James Clark (http://www.libexpat.org)

* STLport, developed by the STLport Standard Library Project (http://www.stlport.org)
* mcpp, developed by Kiyoshi Matsui (http://mcpp.sourceforge.net)

* QT, developed by Nokia (http://qt.nokia.com)

See the Ice source distribution for the license agreements for each of these products.

mailto:info@zeroc.com
http://www.oracle.com
http://sources.redhat.com/bzip2
http://www.openssl.org
mailto:eay@cryptsoft.com
http://www.libexpat.org
http://www.zeroc.com
http://www.stlport.org
http://mcpp.sourceforge.net
http://creativecommons.org/licenses/by-nd/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.zeroc.com/Ice-Manual.pdf
http://qt.nokia.com

Contents

Chapter 1 Introduction 1
1.1 The Internet Communications Engine (Ice) 1
1.2 Organization 2
1.3 Typographical Conventions 3
1.4 Source Code Examples 4
1.5 Contacting the Authors 4
1.6 Ice Support 4
Part I Ice Overview 5
Chapter 2 Ice Overview 7
2.1 Chapter Overview 7
2.2 The Ice Architecture 7
2.3 Ice Services 23
2.4 Architectural Benefits of Ice 26
Chapter 3 A Hello World Application 29
3.1 Chapter Overview 29
3.2 Writing a Slice Definition 30
3.3 Writing an Ice Application with C++ 30
3.4 Writing an Ice Application with Java 39
3.5 Writing an Ice Application with C# 46
3.6 Writing an Ice Application with Visual Basic 53
3.7 Writing an Ice Application with Objective-C 61
3.8 Writing an Ice Application with Python 70
3.9 Writing an Ice Application with Ruby 75
3.10 Writing an Ice Application with PHP 78
3.11 Summary 81

Part II Slice 83
Chapter 4 The Slice Language 85
4.1 Chapter Overview 85
4.2 Introduction 85
4.3 Compilation 86
4.4 Source Files 89
4.5 Lexical Rules 91
4.6 Modules 94
477 The Ice Module 95
4.8 Basic Slice Types 96
4.9 User-Defined Types 98
4.10 Interfaces, Operations, and Exceptions 105
4.11 Classes 131
4.12 Forward Declarations 148
4.13 Type IDs 149
4.14 Operations on Object 150
4.15 Local Types 151
4.16 Names and Scoping 153
4.17 Metadata 159
4.18 Serializable Objects 160
4.19 Deprecating Slice Definitions 162
4.20 Using the Slice Compilers 163
4.21 Slice Checksums 164
4.22 Generating Slice Documentation 165
4.23 Summary 171
Chapter 5 Slice for a Simple File System 173
5.1 Chapter Overview 173
5.2 The File System Application 173
5.3 Slice Definitions for the File System 174
5.4 The Complete Definition 176

Part IIT C++ Mapping 179
Chapter 6 Client-Side Slice-to-C++ Mapping 181
6.1 Chapter Overview 181
6.2 Introduction 181
6.3 Mapping for Identifiers 182
6.4 Mapping for Modules 183
6.5 The Ice Namespace 184
6.6 Mapping for Simple Built-In Types 184
6.7 Mapping for User-Defined Types 186
6.8 Mapping for Constants 196
6.9 Mapping for Exceptions 197
6.10 Mapping for Run-Time Exceptions 201
6.11 Mapping for Interfaces 202
6.12 Mapping for Operations 212
6.13 Exception Handling 218
6.14 Mapping for Classes 220
6.15 Asynchronous Method Invocation (AMI) 244
6.16 slice2cpp Command-Line Options 260
6.17 Using Slice Checksums 266
Chapter 7 Developing a File System Client in C++ 267
7.1 Chapter Overview 267
7.2 The C++ Client 267
7.3 Summary 272
Chapter 8 Server-Side Slice-to-C++ Mapping 273
8.1 Chapter Overview 273
8.2 Introduction 273
8.3 The Server-Side main Function 274
8.4 Mapping for Interfaces 290
8.5 Parameter Passing 293
8.6 Raising Exceptions 294
8.7 Object Incarnation 295
8.8 Asynchronous Method Dispatch (AMD) 300
8.9 Summary 306
Chapter 9 Developing a File System Server in C++ 307
9.1 Chapter Overview 307
9.2 Implementing a File System Server 307
9.3 Summary 324

Vi

Part IV Java Mapping 327
Chapter 10 Client-Side Slice-to-Java Mapping 329
10.1 Chapter Overview 329
10.2 Introduction 329
10.3 Mapping for Identifiers 330
10.4 Mapping for Modules 331
10.5 The Ice Package 332
10.6 Mapping for Simple Built-in Types 332
10.7 Mapping for User-Defined Types 332
10.8 Mapping for Constants 336
10.9 Mapping for Exceptions 337
10.10 Mapping for Run-Time Exceptions 340
10.11 Mapping for Interfaces 341
10.12 Mapping for Operations 351
10.13 Exception Handling 356
10.14 Mapping for Classes 358
10.15 Serializable Objects 367
10.16 Customizing the Java Mapping 368
10.17 Asynchronous Method Invocation (AMI) 379
10.18 Slice Compiler 392
10.19 Using Slice Checksums 397
Chapter 11 Developing a File System Client in Java 399
11.1 Chapter Overview 399
11.2 The Java Client 399
11.3 Summary 403
Chapter 12 Server-Side Slice-to-Java Mapping 405
12.1 Chapter Overview 405
12.2 Introduction 405
12.3 The Server-Side main Method 406
12.4 Mapping for Interfaces 413
12.5 Parameter Passing 416
12.6 Raising Exceptions 417
12.7 Tie Classes 418
12.8 Object Incarnation 422
12.9 Asynchronous Method Dispatch (AMD) 426
12.10 Summary 431

Vii

Chapter 13 Developing a File System Server in Java 433
13.1 Chapter Overview 433
13.2 Implementing a File System Server 433
13.3 Summary 442
Part V C# Mapping 443
Chapter 14 Client-Side Slice-to-C# Mapping 445
14.1 Chapter Overview 445
14.2 Introduction 445
14.3 Mapping for Identifiers 446
14.4 Mapping for Modules 447
14.5 The Ice Namespace 448
14.6 Mapping for Simple Built-in Types 448
14.7 Mapping for User-Defined Types 449
14.8 Mapping for Constants 467
14.9 Mapping for Exceptions 469
14.10 Mapping for Interfaces 472
14.11 Mapping for Operations 480
14.12 Exception Handling 484
14.13 Mapping for Classes 486
14.14 Serializable Objects 497
14.15 C#-Specific Metadata Directives 498
14.16 Asynchronous Method Invocation (AMI) 498
14.17 slice2cs Command-Line Options 513
14.18 Using Slice Checksums 513
Chapter 15 Developing a File System Client in C# 517
15.1 Chapter Overview 517
15.2 The C# Client 517
15.3 Summary 521

viii

Chapter 16 Server-Side Slice-to-C# Mapping 523
16.1 Chapter Overview 523
16.2 Introduction 523
16.3 The Server-Side Main Method 524
16.4 Mapping for Interfaces 530
16.5 Parameter Passing 533
16.6 Raising Exceptions 534
16.7 Tie Classes 536
16.8 Object Incarnation 539
16.9 Asynchronous Method Dispatch (AMD) 543
16.10 Summary 548
Chapter 17 Developing a File System Server in C# 549
17.1 Chapter Overview 549
17.2 Implementing a File System Server 549
17.3 Summary 558
Part VI Objective-C Mapping 559
Chapter 18 Client-Side Slice-to-Objective-C Mapping 561
18.1 Chapter Overview 561
18.2 Introduction 561
18.3 Mapping for Modules 562
18.4 The ICE Prefix 564
18.5 Mapping for Identifiers 564
18.6 Internal Identifiers 565
18.7 Mapping for Built-In Types 566
18.8 Mapping for User-Defined Types 567
18.9 Mapping for Constants 575
18.10 Mapping for Exceptions 576
18.11 Mapping for Interfaces 583
18.12 Mapping for Operations 589
18.13 Exception Handling 597
18.14 Mapping for Local Interfaces 599
18.15 Mapping for Classes 600
18.16 Interfaces by Value 611
18.17 Asynchronous Method Invocation (AMI) 612
18.18 slice2objc Command-Line Options 619

Chapter 19 Developing a File System Client in Objective-C 621
19.1 Chapter Overview 621
19.2 The Objective-C Client 621
19.3 Summary 626
Chapter 20 Server-Side Slice-to-Objective-C Mapping 627
20.1 Chapter Overview 627
20.2 Introduction 627
20.3 The Server-Side main Function 628
20.4 Mapping for Interfaces 631
20.5 Parameter Passing 635
20.6 Raising Exceptions 637
20.7 Object Incarnation 638
20.8 Summary 642
Chapter 21 Developing a File System Server in Objective-C 643
21.1 Chapter Overview 643
21.2 Implementing a File System Server 643
21.3 Summary 655
Part VII Python Mapping 657
Chapter 22 Client-Side Slice-to-Python Mapping 659
22.1 Chapter Overview 659
22.2 Introduction 659
22.3 Mapping for Identifiers 660
22.4 Mapping for Modules 661
22.5 The Ice Module 661
22.6 Mapping for Simple Built-In Types 661
22.7 Mapping for User-Defined Types 663
22.8 Mapping for Constants 668
22.9 Mapping for Exceptions 669
22.10 Mapping for Run-Time Exceptions 671
22.11 Mapping for Interfaces 672
22.12 Mapping for Operations 678
22.13 Exception Handling 683
22.14 Mapping for Classes 684
22.15 Asynchronous Method Invocation (AMI) 691
22.16 Code Generation 701
22.17 Using Slice Checksums 711

Chapter 23 Developing a File System Client in Python 713
23.1 Chapter Overview 713
23.2 The Python Client 713
23.3 Summary 717
Chapter 24 Server-Side Slice-to-Python Mapping 719
24.1 Chapter Overview 719
24.2 Introduction 719
24.3 The Server-Side Main Program 720
24.4 Mapping for Interfaces 726
24.5 Parameter Passing 729
24.6 Raising Exceptions 730
24.7 Object Incarnation 731
24.8 Asynchronous Method Dispatch (AMD) 735
249 Summary 740
Chapter 25 Developing a File System Server in Python 741
25.1 Chapter Overview 741
25.2 Implementing a File System Server 741
25.3 Thread Safety 748
25.4 Summary 749
Part VIII Ruby Mapping 751
Chapter 26 Client-Side Slice-to-Ruby Mapping 753
26.1 Chapter Overview 753
26.2 Introduction 753
26.3 Mapping for Identifiers 754
26.4 Mapping for Modules 755
26.5 The Ice Module 755
26.6 Mapping for Simple Built-In Types 755
26.7 Mapping for User-Defined Types 756
26.8 Mapping for Constants 761
26.9 Mapping for Exceptions 762
26.10 Mapping for Run-Time Exceptions 764
26.11 Mapping for Interfaces 764
26.12 Mapping for Operations 771
26.13 Exception Handling 775
26.14 Mapping for Classes 777
26.15 Code Generation 786
26.16 The main Program 791
26.17 Using Slice Checksums 797

Xi

Chapter 27 Developing a File System Client in Ruby 799
27.1 Chapter Overview 799
27.2 The Ruby Client 799
27.3 Summary 803
Part IX PHP Mapping 805
Chapter 28 Client-Side Slice-to-PHP Mapping 807
28.1 Chapter Overview 807
28.2 Introduction 807
28.3 Mapping for Identifiers 808
28.4 Mapping for Modules 808
28.5 The Ice Module 809
28.6 Mapping for Simple Built-In Types 810
28.7 Mapping for User-Defined Types 811
28.8 Mapping for Constants 814
28.9 Mapping for Exceptions 815
28.10 Mapping for Run-Time Exceptions 816
28.11 Mapping for Interfaces 817
28.12 Mapping for Operations 825
28.13 Exception Handling 828
28.14 Mapping for Classes 829
28.15 slice2php Command-Line Options 837
28.16 Application Notes 838
28.17 Using Slice Checksums 846
Chapter 29 Developing a File System Client in PHP 849
29.1 Chapter Overview 849
29.2 The PHP Client 849
29.3 Summary 853

Xii

Part X Advanced Ice 855
Chapter 30 Ice Properties and Configuration 857
30.1 Chapter Overview 857
30.2 Properties 857
30.3 Configuration Files 859
30.4 Setting Properties on the Command Line 862
30.5 Using Configuration Files 862
30.6 Alternate Property Stores 865
30.7 Command-Line Parsing and Initialization 866
30.8 The Ice.ProgramName property 869
30.9 Using Properties Programmatically 869
30.10 Unused Properties 879
30.11 Summary 879
Chapter 31 Threads and Concurrency with C++ 881
31.1 Chapter Overview 881
31.2 Introduction 881
31.3 Library Overview 882
31.4 Mutexes 882
31.5 Recursive Mutexes 889
31.6 Monitors 892
31.7 Condition Variables 901
31.8 Threads 905
31.9 Priority Inversion 915
31.10 Portable Signal Handling 916
31.11 Summary 917

xiii

Chapter 32

Chapter 33

The Ice Run Time in Detail

32.1
322
323
324
325
32.6
32.7
32.8
329
32.10
32.11
32.12
32.13
32.14
32.15
32.16
32.17
32.18
32.19
32.20
32.21
3222
32.23
32.24
32.25
32.26
32.27

Introduction

Communicators
Communicator Initialization
Object Adapters

Object Identity

The Ice: :Current Object
Servant Locators

Default Servants

Server Implementation Techniques
The Ice Threading Model
Proxies

The Ice: :Context Parameter
Connection Timeouts

Oneway Invocations

Datagram Invocations

Batched Invocations

Location Services
Administrative Facility

The Ice: :Logger Interface
The Ice: :Stats Interface
Location Transparency
Automatic Retries

Dispatch Interceptors

C++ Strings and Character Encoding
Developing a Plug-In

Custom Class Loaders
Summary

Facets and Versioning

33.1
33.2
333
334
335
33.6
33.7
33.8

Introduction

Concept and APIs

The Versioning Problem
Versioning with Facets
Facet Selection
Behavioral Versioning
Design Considerations
Summary

919
919
920
925
927
941
945
946
963
969
1003
1028
1042
1051
1053
1058
1060
1063
1072
1081
1090
1092
1094
1100
1105
1113
1119
1120

1121
1121
1121
1128
1134
1134
1136
1138
1140

Xiv

Chapter 34

Chapter 35

Chapter 36

Chapter 37

Object Life Cycle

34.1 Chapter Overview

34.2 Introduction

34.3 Object Existence and Non-Existence

34.4 Life Cycle of Proxies, Servants, and Ice Objects
34.5 Object Creation

34.6 Object Destruction

347 Removing Cyclic Dependencies

34.8 Object Identity and Uniqueness

34.9 Object Life Cycle for the File System Application
34.10 Avoiding Server-Side Garbage

34.11 Summary

Dynamic Ice

35.1 Chapter Overview

35.2 Streaming Interface

35.3 Dynamic Invocation and Dispatch

35.4 Asynchronous Dynamic Invocation and Dispatch
35.5 Summary

Connection Management

36.1 Chapter Overview

36.2 Introduction

36.3 Connection Establishment

36.4 Active Connection Management
36.5 Obtaining a Connection

36.6 Connection Closure

36.7 Bidirectional Connections

36.8 Summary

The Ice Protocol

37.1 Chapter Overview

37.2 Data Encoding

37.3 Protocol Messages

374 Compression

37.5 Protocol and Encoding Versions

1141
1141
1142
1143
1148
1150
1154
1171
1178
1180
1198
1208

1209
1209
1209
1249
1266
1273

1275
1275
1275
1276
1281
1282
1290
1291
1296

1297
1297
1297
1322
1332
1334

XV

Part XI Ice Services 1339
Chapter 38 IceGrid 1341
38.1 Chapter Overview 1341
38.2 Introduction 1342
38.3 IceGrid Architecture 1344
38.4 Getting Started 1348
38.5 Using Deployment 1353
38.6 Well-known Objects 1362
38.7 Templates 1371
38.8 IceBox Integration 1377
38.9 Object Adapter Replication 1380
38.10 Load Balancing 1383
38.11 Sessions 1387
38.12 Registry Replication 1394
38.13 Application Distribution 1399
38.14 Administrative Sessions 1407
38.15 Glacier2 Integration 1414
38.16 Using an SQL Database 1418
38.17 XML Reference 1419
38.18 Variable and Parameter Semantics 1449
38.19 Property Set Semantics 1455
38.20 XML Features 1460
38.21 Server Reference 1463
38.22 Administrative Facility Integration 1472
38.23 Securing IceGrid 1481
38.24 Administrative Utilities 1486
38.25 Server Activation 1494
38.26 Solving Problems 1498
38.27 Summary 1501
Chapter 39 Freeze 1503
39.1 Chapter Overview 1503
39.2 Introduction 1504
39.3 Freeze Evictors 1504
39.4 Using the Freeze Evictor in a File System Server 1521
39.5 The Freeze Map 1541
39.6 Using a Freeze Map in the File System Server 1576
39.7 The Freeze Catalog 1602
39.8 Backups 1603
39.9 Summary 1604

XVi

Chapter 40 FreezeScript

Chapter 41

Chapter 42

40.1
40.2
40.3
40.4
40.5
40.6
40.7
40.8
40.9

Chapter Overview

Introduction

Database Migration
Transformation Descriptors
Using transformdb
Database Inspection

Using dumpdb

Descriptor Expression Language
Summary

IceSSL

41.1
41.2
41.3
414
41.5
41.6
41.7
41.8

Chapter Overview

Introduction

Using IceSSL

Configuring IceSSL
Programming with IceSSL
Advanced Topics

Setting up a Certificate Authority
Summary

Glacier2

42.1
42.2
42.3
424
42.5
42.6
42.7
42.8
429
42.10
42.11
42.12
42.13
42.14

Chapter Overview
Introduction

Using Glacier2
Callbacks

Helper Classes
Router Security
Session Management
Dynamic Filtering
Request Buffering
Request Contexts
Firewalls

Advanced Client Configurations
IceGrid Integration
Summary

1605
1605
1605
1606
1612
1626
1634
1645
1650
1653

1655
1655
1655
1658
1661
1675
1690
1698
1704

1705
1705
1705
1710
1717
1720
1729
1738
1742
1744
1745
1747
1748
1750
1751

XVii

Chapter 43 IceBox 1753
43.1 Chapter Overview 1753

43.2 Introduction 1753

43.3 Developing a Service 1754

43.4 Starting IceBox 1763

43.5 IceBox Administration 1764

43.6 Summary 1769

Chapter 44 IceStorm 1771
44.1 Chapter Overview 1771

44.2 Introduction 1771

44.3 Concepts 1773

44.4 IceStorm Interface Overview 1776

44.5 Using IceStorm 1778

44.6 Publishing to a Specific Subscriber 1789

447 Highly Available IceStorm 1791

44.8 IceStorm Administration 1796

449 Topic Federation 1798

44.10 Quality of Service 1802

44.11 Delivery Mode 1804

44.12 Configuring IceStorm 1806

44.13 Summary 1812

Chapter 45 IcePatch2 1813
45.1 Chapter Overview 1813

45.2 Introduction 1813

45.3 Using icepatch2calc 1814

45.4 Running the Server 1817

45.5 Running the Client 1818

45.6 Object Identities 1821

45.7 The IcePatch2 Client Utility Library 1821

45.8 Summary 1826
Appendixes 1827
Appendix A Slice Keywords 1829

xviii

Appendix B Slice Metadata Directives

Appendix C
Appendix D

Appendix E

B.1 General Metadata Directives

B.2 Metadata Directives for C++

B.3 Metadata Directives for Java

B.4 Metadata Directives for C#

B.5 Metadata Directives for .NET and Mono
B.6 Metadata Directives for Objective-C
B.7 Metadata Directives for Python

B.8 Metadata Directives for Freeze
Slice API Reference

Properties

D.1 Ice Configuration Property

D.2 Ice Trace Properties

D.3 Ice Warning Properties

D.4 Ice Object Adapter Properties

D.5 Ice Administrative Properties

D.6 Ice Plug-In Properties

D.7 Ice Thread Pool Properties

D.8 Ice Default and Override Properties
D.9 Ice Proxy Properties

D.10 Ice Transport Properties

D.11 Ice Miscellaneous Properties

D.12 IceSSL Properties

D.13 IceBox Properties

D.14 IceBoxAdmin Properties

D.15 IceGrid Properties

D.16 IceGrid Administrative Client Properties
D.17 IceStorm Properties

D.18 Glacier2 Properties

D.19 Freeze Properties

D.20 IcePatch2 Properties

Proxies and Endpoints

E.1 Proxies

E.2 Endpoints

1831
1831
1832
1835
1836
1836
1837
1837
1838

1839

1841
1841
1842
1845
1848
1853
1855
1858
1861
1866
1869
1871
1881
1898
1902
1902
1923
1925
1935
1950
1958

1961
1961
1963

Xix

Appendix F

Appendix G

Appendix H

Appendix I

Appendix J

The C++ Utility Library

F.1 Introduction

F2 AbstractMutex

F3 Cache

F4 CtrlCHandler

F5 Exception

F6 generateUUID

F7 Handle Template

F.8 Handle Template Adaptors
F9 ScopedArray

F.10 Sharedand SimpleShared
F.11 Threads and Synchronization Primitives
F12 Time

F.13 Timer and TimerTask

F.14 Unicode and UTF-8 Conversion Functions
F.15 Version Information

The Java Utility Library

G.1 Introduction

G.2 The IceUtil Package

G.3 The Ice.Util Class

Windows Services

H.1 Introduction

H.2 Installing a Windows Service
H.3 The Ice Service Installer

H.4 Manual Installation

H.5 Troubleshooting

The .NET Utility Library

I.1 Introduction

| Communicator Initialization Methods
L3 Identity Conversion

L4 Property Creation Methods

L5 Proxy Comparison Methods

1.6 Stream Creation

| UUID Generation

L8 Version Information

Binary Distributions

J.1 Introduction

J.2 Developer Kits

1.3 Guidelines

1973
1973
1973
1976
1979
1980
1980
1981
1984
1989
1990
1991
1991
1995
1998
1999

2001
2001
2001
2004

2007
2007
2008
2008
2014
2022

2025
2025
2025
2025
2026
2026
2026
2026
2026

2029
2029
2029
2030

XX

Appendix K Deprecated AMI Mapping

Bibliography

K.1
K.2
K.3
K.4
K.5

Chapter Overview
Introduction

Using AMI
Language Mappings
Summary

2035
2035
2035
2038
2042
2058

2059

Chapter 1
Introduction

1.1

The Internet Communications Engine (Ice)

The rise of object-oriented middleware in the mid-nineties was an important step
forward toward making distributed computing available to application developers.
For the first time, it was possibe to build distributed applications without having to
be a networking guru: the middleware platform took care of the majority of
networking chores, such as marshaling and unmarshaling (encoding and decoding
data for transmission), mapping logical object addresses to physical transport
endpoints, changing the representation of data according to the native machine
architecture of client and server, and automatically starting servers on demand.

Despite these advances, the leading object-oriented middleware platforms
suffered from a number of serious practical limitations that prompted ZeroC to
develop the Internet Communications Engine, or Ice for short.! The main design
goals of Ice are:

* Provide an object-oriented middleware platform suitable for use in heteroge-
neous environments.

* Provide a full set of features that support development of realistic distributed
applications for a wide variety of domains.

1. The acronym “Ice” is pronounced as a single syllable, like the word for frozen water.

Introduction

1.2

* Avoid unnecessary complexity, making the platform easy to learn and to use.

* Provide an implementation that is efficient in network bandwidth, memory
use, and CPU overhead.

* Provide an implementation that has built-in security, making it suitable for use
over insecure public networks.

To be more simplistic, the Ice design goals could be stated as “Let’s build a more
powerful middleware platform that makes the developer’s life easier and avoids
the mistakes of its predecessors.”

Organization

This book is divided into four parts and a number of appendixes:

* Part I: Ice Overview provides an overview of the features offered by Ice and
explains the Ice object model. After reading this part, you will understand the
major features and architecture of the Ice platform, its object model and
request dispatch model, and know the basic steps required to build a simple
application in C++, Java, C#, Visual Basic, Objective-C, Python, and Ruby.

* Part II: Slice explains the Slice definition language. After reading this part,
you will have detailed knowledge of how to specify interfaces and types for a
distributed application.

¢ Part III through Part IX cover language mappings. Each section shows how to
implement an application in your language of choice.

* Part X: Advanced Ice presents many Ice features in detail and covers advanced
aspects of server development, such as properties, threading, object life cycle,
object location, persistence, and asynchronous as well as dynamic method
invocation and dispatch. After reading this part, you will understand the
advanced features of Ice and how to effectively use them to find the correct
trade-off between performance and resource consumption as appropriate for
your application requirements.

® Part XI: Ice Services covers the services provided with Ice, such as IceGrid (a
sophisticated deployment tool), Glacier2 (the Ice firewall solution), IceStorm
(the Ice messaging service), and IcePatch2 (a software patching service).?

* Appendixes contain Ice reference material and explain the feature differences
between Ice and Ice-E (the version of Ice for embedded systems).

1.3 Typographical Conventions

NOTE:

1.3

This entire manual is also available online as a set of HTML pages at
http://www.zeroc.com/doc/Ice-3.4.1/manual.

You can always find the latest version of the manual at
http://www.zeroc.com/Ice-Manual.html.

In addition, you can find an online reference of all the Slice APIs that are used by
Ice and its services at http://www.zeroc.com/doc/Ice-3.4.1/reference.

You can always find the latest version of this reference at
http://www.zeroc.com/Slice-Reference.html.

Typographical Conventions

This book uses the following typographical conventions:
¢ Slice source code appears in monospace.
* Programming-language source code appears in monospace.
* File names appear in monospace.
* Commands appear in monospace bold.

Occasionally, we present copy of an interactive session at a terminal. In such
cases, we assume a Bourne shell (or one of its derivatives, such as ksh or bash).
Output presented by the system is shown in monospace, and input is presented
inmonospace bold, for example:

$ echo hello
hello

Slice and the various programming languages often use the same identifiers.
When we talk about an identifier in its generic, language-independent sense, we
use monospace. When we talk about an identifier in its language-specific (for
example, C++ or Java) sense, we use monospace.

2. If you notice a certain commonality in the theme of naming Ice features, it just goes to show that
software developers are still inveterate punsters.

http://www.zeroc.com/Ice-Manual.html
http://www.zeroc.com/doc/Ice-3.4.1/reference
http://www.zeroc.com/doc/Ice-3.4.1/reference
http://www.zeroc.com/doc/Ice-3.4.1/reference
http://www.zeroc.com/doc/Ice-3.4.1/manual
http://www.zeroc.com/doc/Ice-3.4.1/manual
http://www.zeroc.com/Slice-Reference.html

Introduction

1.4

Source Code Examples

1.5

Throughout the book, we use a case study to illustrate various aspects of Ice. The
case study implements a simple distributed hierarchical file system, which we
progressively improve to take advantage of more sophisticated features as the
book progresses. The source code for the case study in its various stages is
provided with the distribution of this book. We encourage you to experiment with
these code examples (as well as the many demonstration programs that ship with
Ice).

Contacting the Authors

1.6

We would very much like to hear from you in case you find any bugs (however
minor) in this book. We also would like to hear your opinion on the contents, and
any suggestions as to how it might be improved. You can contact us via e-mail at
mailto:icebook @zeroc.com.

Ice Support

If you have a question and you cannot find an answer in this manual, you can visit
our developer forums at http://www.zeroc.com/forums to see if another developer
has encountered the same issue. If you still need help, feel free to post your ques-
tion on the forum, which ZeroC's developers monitor regularly. Note, however,
that we can provide only limited free support in our forums. For guaranteed
response and problem resolution times, we highly recommend purchasing
commercial support.

mailto:icebook@zeroc.com
http://www.zeroc.com/forums

Part 1

Ice Overview

Chapter 2
Ice Overview

2.1 Chapter Overview
In this chapter, we present a high-level overview of the Ice architecture.
Section 2.2 introduces fundamental concepts and terminology, and outlines how
Slice definitions, language mappings, and the Ice run time and protocol work in
concert to create clients and servers. Section 2.3 briefly presents the object
services provided by Ice, and Section 2.4 outlines the benefits that result from the
Ice architecture.

2.2 The Ice Architecture

2.2.1 Introduction

Ice is an object-oriented middleware platform. Fundamentally, this means that Ice
provides tools, APIs, and library support for building object-oriented client—server
applications. Ice applications are suitable for use in heterogeneous environments:
client and server can be written in different programming languages, can run on
different operating systems and machine architectures, and can communicate
using a variety of networking technologies. The source code for these applications
is portable regardless of the deployment environment.

Ice Overview

2.2.2

Terminology

Every computing technology creates its own vocabulary as it evolves. Ice is no
exception. However, the amount of new jargon used by Ice is minimal. Rather
than inventing new terms, we have used existing terminology as much as possible.
If you have used another middleware technology in the past, you will be familiar
with much of what follows. (However, we suggest you at least skim the material
because a few terms used by Ice do differ from the corresponding terms used by
other middleware.)

Clients and Servers

The terms client and server are not firm designations for particular parts of an
application; rather, they denote roles that are taken by parts of an application for
the duration of a request:

* Clients are active entities. They issue requests for service to servers.

* Servers are passive entities. They provide services in response to client
requests.

Frequently, servers are not “pure” servers, in the sense that they never issue
requests and only respond to requests. Instead, servers often act as a server on
behalf of some client but, in turn, act as a client to another server in order to
satisfy their client’s request.

Similarly, clients often are not “pure” clients, in the sense that they only
request service from an object. Instead, clients are frequently client—server
hybrids. For example, a client might start a long-running operation on a server; as
part of starting the operation, the client can provide a callback object to the server
that is used by the server to notify the client when the operation is complete. In
that case, the client acts as a client when it starts the operation, and as a server
when it is notified that the operation is complete.

Such role reversal is common in many systems, so, frequently, client—server
systems could be more accurately described as peer-to-peer systems.
Ice Objects

An Ice object is a conceptual entity, or abstraction. An Ice object can be character-
ized by the following points:

* An Ice object is an entity in the local or a remote address space that can
respond to client requests.

2.2 The Ice Architecture 9

* A single Ice object can be instantiated in a single server or, redundantly, in
multiple servers. If an object has multiple simultaneous instantiations, it is still
a single Ice object.

* Each Ice object has one or more inferfaces. An interface is a collection of
named operations that are supported by an object. Clients issue requests by
invoking operations.

* An operation has zero or more parameters as well as a return value. Parame-
ters and return values have a specific type. Parameters are named and have a
direction: in-parameters are initialized by the client and passed to the server;
out-parameters are initialized by the server and passed to the client. (The
return value is simply a special out-parameter.)

* An Ice object has a distinguished interface, known as its main interface. In
addition, an Ice object can provide zero or more alternate interfaces, known as
facets. Clients can select among the facets of an object to choose the interface
they want to work with.

® Each Ice object has a unique object identity. An object’s identity is an identi-
fying value that distinguishes the object from all other objects. The Ice object
model assumes that object identities are globally unique, that is, no two
objects within an Ice communication domain can have the same object iden-
tity.
In practice, you need not use object identities that are globally unique, such as
UUIDs [14], only identities that do not clash with any other identity within
your domain of interest. However, there are architectural advantages to using
globally unique identifiers, which we explore in Chapter 34.

Proxies

For a client to be able to contact an Ice object, the client must hold a proxy for the
Ice object. A proxy is an artifact that is local to the client’s address space; it repre-
sents the (possibly remote) Ice object for the client. A proxy acts as the local
ambassador for an Ice object: when the client invokes an operation on the proxy,
the Ice run time:

1. Locates the Ice object

2. Activates the Ice object’s server if it is not running
3. Activates the Ice object within the server

4. Transmits any in-parameters to the Ice object

5. Waits for the operation to complete

Ice Overview

6. Returns any out-parameters and the return value to the client (or throws an
exception in case of an error)

A proxy encapsulates all the necessary information for this sequence of steps to
take place. In particular, a proxy contains:

* Addressing information that allows the client-side run time to contact the
correct server

* An object identity that identifies which particular object in the server is the
target of a request

* An optional facet identifier that determines which particular facet of an object
the proxy refers to

Section 32.11 provides more information about proxies.

Stringified Proxies
The information in a proxy can be expressed as a string. For example, the string

SimplePrinter:default -p 10000

is a human-readable representation of a proxy. The Ice run time provides API calls
that allow you to convert a proxy to its stringified form and vice versa. This is
useful, for example, to store proxies in database tables or text files.

Provided that a client knows the identity of an Ice object and its addressing
information, it can create a proxy “out of thin air” by supplying that information.
In other words, no part of the information inside a proxy is considered opaque; a
client needs to know only an object’s identity, addressing information, and (to be
able to invoke an operation) the object’s type in order to contact the object.

Direct Proxies

A direct proxy is a proxy that embeds an object’s identity, together with the
address at which its server runs. The address is completely specified by:

* a protocol identifier (such TCP/IP or UDP)
* a protocol-specific address (such as a host name and port number)

To contact the object denoted by a direct proxy, the Ice run time uses the
addressing information in the proxy to contact the server; the identity of the object
is sent to the server with each request made by the client.

2.2 The Ice Architecture 11

Indirect Proxies

An indirect proxy has two forms. It may provide only an object’s identity, or it
may specify an identity together with an object adapter identifier. An object that is
accessible using only its identity is called a well-known object. For example, the
string

SimplePrinter

is a valid proxy for a well-known object with the identity SimplePrinter.
An indirect proxy that includes an object adapter identifier has the stringified
form

SimplePrinter@PrinterAdapter

Any object of the object adapter can be accessed using such a proxy, regardless of
whether that object is also a well-known object.

Notice that an indirect proxy contains no addressing information. To deter-
mine the correct server, the client-side run time passes the proxy information to a
location service (see Section 32.17). In turn, the location service uses the object
identity or the object adapter identifier as the key in a lookup table that contains
the address of the server and returns the current server address to the client. The
client-side run time now knows how to contact the server and dispatches the client
request as usual.

The entire process is similar to the mapping from Internet domain names to IP
address by the Domain Name Service (DNS): when we use a domain name, such
as www.zeroc.com, to look up a web page, the host name is first resolved to an IP
address behind the scenes and, once the correct IP address is known, the IP
address is used to connect to the server. With Ice, the mapping is from an object
identity or object adapter identifier to a protocol-address pair, but otherwise very
similar. The client-side run time knows how to contact the location service via
configuration (just as web browsers know which DNS to use via configuration).

Direct Versus Indirect Binding

The process of resolving the information in a proxy to protocol-address pair is
known as binding. Not surprisingly, direct binding is used for direct proxies, and
indirect binding is used for indirect proxies.

The main advantage of indirect binding is that it allows us to move servers
around (that is, change their address) without invalidating existing proxies that are
held by clients. In other words, direct proxies avoid the extra lookup to locate the
server but no longer work if a server is moved to a different machine. On the other
hand, indirect proxies continue to work even if we move (or migrate) a server.

12

Ice Overview

Fixed Proxies

A fixed proxy is a proxy that is bound to a particular connection: instead of
containing addressing information or an adapter name, the proxy contains a
connection handle. The connection handle stays valid only for as long as the
connection stays open so, once the connection is closed, the proxy no longer
works (and will never work again). Fixed proxies cannot be marshaled, that is,
they cannot be passed as parameters on operation invocations. Fixed proxies are
used to allow bidirectional communication, so a server can make callbacks to a
client without having to open a new connection (see Section 36.7).

Routed Proxies

A routed proxy is a proxy that forwards all invocations to a specific target object,
instead of sending invocations directly to the actual target. Routed proxies are
useful to implement services such as Glacier2, which enables clients to communi-
cate with servers that are behind a firewall (see Chapter 42).

Replication

In Ice, replication involves making object adapters (and their objects) available at
multiple addresses. The goal of replication is usually to provide redundancy by
running the same server on several computers. If one of the computers should
happen to fail, a server still remains available on the others.

The use of replication implies that applications are designed for it. In partic-
ular, it means a client can access an object via one address and obtain the same
result as from any other address. Either these objects are stateless, or their imple-
mentations are designed to synchronize with a database (or each other) in order to
maintain a consistent view of each object’s state.

Ice supports a limited form of replication when a proxy specifies multiple
addresses for an object. The Ice run time selects one of the addresses at random
for its initial connection attempt (see Section 32.11) and tries all of them in the
case of a failure. For example, consider this proxy:

SimplePrinter:tcp -h serverl -p 1000l:tcp -h server2 -p 10002

The proxy states that the object with identity SimplePrinter is available
using TCP at two addresses, one on the host serverl and another on the host
server2. The burden falls to users or system administrators to ensure that the
servers are actually running on these computers at the specified ports.

2.2 The Ice Architecture 13

Replica Groups

In addition to the proxy-based replication described above, Ice supports a more
useful form of replication known as replica groups that requires the use of a loca-
tion service (see Section 32.17).

A replica group has a unique identifier and consists of any number of object
adapters. An object adapter may be a member of at most one replica group; such
an adapter is considered to be a replicated object adapter.

After a replica group has been established, its identifier can be used in an indi-
rect proxy in place of an adapter identifier. For example, a replica group identified
as PrinterAdapters can be used in a proxy as shown below:

SimplePrinter@PrinterAdapters

The replica group is treated by the location service as a “virtual object adapter.”
The behavior of the location service when resolving an indirect proxy containing a
replica group id is an implementation detail. For example, the location service
could decide to return the addresses of all object adapters in the group, in which
case the client’s Ice run time would select one of the addresses at random using
the limited form of replication discussed earlier. Another possibility is for the
location service to return only one address, which it decided upon using some
heuristic.

Regardless of the way in which a location service resolves a replica group, the
key benefit is indirection: the location service as a middleman can add more intel-
ligence to the binding process.

Servants

As we mentioned on page 8, an Ice object is a conceptual entity that has a type,
identity, and addressing information. However, client requests ultimately must end
up with a concrete server-side processing entity that can provide the behavior for
an operation invocation. To put this differently, a client request must ultimately
end up executing code inside the server, with that code written in a specific
programming language and executing on a specific processor.

The server-side artifact that provides behavior for operation invocations is
known as a servant. A servant provides substance for (or incarnates) one or more
Ice objects. In practice, a servant is simply an instance of a class that is written by
the server developer and that is registered with the server-side run time as the
servant for one or more Ice objects. Methods on the class correspond to the opera-
tions on the Ice object’s interface and provide the behavior for the operations.

14

Ice Overview

A single servant can incarnate a single Ice object at a time or several Ice
objects simultaneously. If the former, the identity of the Ice object incarnated by
the servant is implicit in the servant. If the latter, the servant is provided the iden-
tity of the Ice object with each request, so it can decide which object to incarnate
for the duration of the request.

Conversely, a single Ice object can have multiple servants. For example, we
might choose to create a proxy for an Ice object with two different addresses for
different machines. In that case, we will have two servers, with each server
containing a servant for the same Ice object. When a client invokes an operation
on such an Ice object, the client-side run time sends the request to exactly one
server. In other words, multiple servants for a single Ice object allow you to build
redundant systems: the client-side run time attempts to send the request to one
server and, if that attempt fails, sends the request to the second server. An error is
reported back to the client-side application code only if that second attempt fails
as well.

At-Most-Once Semantics

Ice requests have at-most-once semantics: the Ice run time does its best to deliver
a request to the correct destination and, depending on the exact circumstances,
may retry a failed request. Ice guarantees that it will either deliver the request, or,
if it cannot deliver the request, inform the client with an appropriate exception;
under no circumstances is a request delivered twice, that is, retries are attempted
only if it is known that a previous attempt definitely failed.!

At-most-once semantics are important because they guarantee that operations
that are not idempotent can be used safely. An idempotent operation is an opera-
tion that, if executed twice, has the same effect as if executed once. For example,
x = 1; is an idempotent operation: if we execute the operation twice, the end
result is the same as if we had executed it once. On the other hand, x++ ; is not
idempotent: if we execute the operation twice, the end result is not the same as if
we had executed it once.

Without at-most-once semantics, we can build distributed systems that are
more robust in the presence of network failures. However, realistic systems
require non-idempotent operations, so at-most-once semantics are a necessity,
even though they make the system less robust in the presence of network failures.

1. One exception to this rule are datagram invocations over UDP transports. For these, duplicated
UDP packets can lead to a violation of at-most-once semantics.

2.2 The Ice Architecture 15

Ice permits you to mark individual operations as idempotent. For such operations,
the Ice run time uses a more aggressive error recovery mechanism than for non-
idempotent operations.

Synchronous Method Invocation

By default, the request dispatch model used by Ice is a synchronous remote proce-
dure call: an operation invocation behaves like a local procedure call, that is, the
client thread is suspended for the duration of the call and resumes when the call
completes (and all its results are available).

Asynchronous Method Invocation

Ice also supports asynchronous method invocation (AMI): clients can invoke oper-
ations asynchronously, that is, the client uses a proxy as usual to invoke an opera-
tion but, in addition to passing the normal parameters, also passes a callback
object and the client invocation returns immediately. Once the operation
completes, the client-side run time invokes a method on the callback object passed
initially, passing the results of the operation to the callback object (or, in case of
failure, passing exception information).

The server cannot distinguish an asynchronous invocation from a synchronous
one—either way, the server simply sees that a client has invoked an operation on
an object.

Asynchronous Method Dispatch

Asynchronous method dispatch (AMD) is the server-side equivalent of AMI. For
synchronous dispatch (the default), the server-side run time up-calls into the appli-
cation code in the server in response to an operation invocation. While the opera-
tion is executing (or sleeping, for example, because it is waiting for data), a thread
of execution is tied up in the server; that thread is released only when the opera-
tion completes.

With asynchronous method dispatch, the server-side application code is
informed of the arrival of an operation invocation. However, instead of being
forced to process the request immediately, the server-side application can choose
to delay processing of the request and, in doing so, releases the execution thread
for the request. The server-side application code is now free to do whatever it
likes. Eventually, once the results of the operation are available, the server-side
application code makes an API call to inform the server-side Ice run time that a
request that was dispatched previously is now complete; at that point, the results
of the operation are returned to the client.

16

Ice Overview

Asynchronous method dispatch is useful if, for example, a server offers opera-
tions that block clients for an extended period of time. For example, the server
may have an object with a get operation that returns data from an external, asyn-
chronous data source and that blocks clients until the data becomes available.
With synchronous dispatch, each client waiting for data to arrive ties up an execu-
tion thread in the server. Clearly, this approach does not scale beyond a few dozen
clients. With asynchronous dispatch, hundreds or thousands of clients can be
blocked in the same operation invocation without tying up any threads in the
server.

Another way to use asynchronous method dispatch is to complete an opera-
tion, so the results of the operation are returned to the client, but to keep the execu-
tion thread of the operation beyond the duration of the operation invocation. This
allows you to continue processing after results have been returned to the client, for
example, to perform cleanup or write updates to persistent storage.

Synchronous and asynchronous method dispatch are transparent to the client,
that is, the client cannot tell whether a server chose to process a request synchro-
nously or asynchronously.

Oneway Method Invocation

Clients can invoke an operation as a oneway operation. A oneway invocation has
“best effort” semantics. For a oneway invocation, the client-side run time hands
the invocation to the local transport, and the invocation completes on the client
side as soon as the local transport has buffered the invocation. The actual invoca-
tion is then sent asynchronously by the operating system. The server does not
reply to oneway invocations, that is, traffic flows only from client to server, but not
vice versa.

Oneway invocations are unreliable. For example, the target object may not
exist, in which case the invocation is simply lost. Similarly, the operation may be
dispatched to a servant in the server, but the operation may fail (for example,
because parameter values are invalid); if so, the client receives no notification that
something has gone wrong.

Oneway invocations are possible only on operations that do not have a return
value, do not have out-parameters, and do not throw user exceptions (see
Chapter 4).

To the application code on the server-side, oneway invocations are transparent,

that is, there is no way to distinguish a twoway invocation from a oneway invoca-
tion.

2.2 The Ice Architecture 17

Oneway invocations are available only if the target object offers a stream-
oriented transport, such as TCP/IP or SSL.

Note that, even though oneway operations are sent over a stream-oriented
transport, they may be processed out of order in the server. This can happen
because each invocation may be dispatched in its own thread: even though the
invocations are initiated in the order in which the invocations arrive at the server,
this does not mean that they will be processed in that order—the vagaries of
thread scheduling can result in a oneway invocation to complete before other
oneway invocations that were received earlier.

Batched Oneway Method Invocation

Each oneway invocation sends a separate message to the server. For a series of
short messages, the overhead of doing so is considerable: the client- and server-
side run time each must switch between user mode and kernel mode for each
message and, at the networking level, each message incurs the overheads of flow-
control and acknowledgement.

Batched oneway invocations allow you to send a series of oneway invocations
as a single message: every time you invoke a batched oneway operation, the invo-
cation is buffered in the client-side run time. Once you have accumulated all the
oneway invocations you want to send, you make a separate API call to send all the
invocations at once. The client-side run time then sends all of the buffered invoca-
tions in a single message, and the server receives all of the invocations in a single
message. This avoids the overhead of repeatedly trapping into the kernel for both
client and server, and is much easier on the network between them because one
large message can be transmitted more efficiently than many small ones.

The individual invocations in a batched oneway message are dispatched by a
single thread in the order in which they were placed into the batch. This guaran-
tees that the individual operations in a batched oneway message are processed in
order in the server.

Batched oneway invocations are particularly useful for messaging services,
such as IceStorm (see Chapter 44), and for fine-grained interfaces that offer set
operations for small attributes.

Datagram Invocations

Datagram invocations have similar “best effort” semantics to oneway invocations.
However, datagram invocations require the object to offer UDP as a transport
(whereas oneway invocations require TCP/IP).

18

Ice Overview

Like a oneway invocation, a datagram invocation can be made only if the oper-
ation does not have a return value, out-parameters, or user exceptions. A datagram
invocation uses UDP to invoke the operation. The operation returns as soon as the
local UDP stack has accepted the message; the actual operation invocation is sent
asynchronously by the network stack behind the scenes.

Datagrams, like oneway invocations, are unreliable: the target object may not
exist in the server, the server may not be running, or the operation may be invoked
in the server but fail due to invalid parameters sent by the client. As for oneway
invocations, the client receives no notification of such errors.

However, unlike oneway invocations, datagram invocations have a number of
additional error scenarios:

¢ Individual invocations may simply be lost in the network.

This is due to the unreliable delivery of UDP packets. For example, if you
invoke three operations in sequence, the middle invocation may be lost. (The
same thing cannot happen for oneway invocations—because they are deliv-
ered over a connection-oriented transport, individual invocations cannot be
lost.)

¢ Individual invocations may arrive out of order.

Again, this is due to the nature of UDP datagrams. Because each invocation is
sent as a separate datagram, and individual datagrams can take different paths
through the network, it can happen that invocations arrive in an order that
differs from the order in which they were sent.

Datagram invocations are well suited for small messages on LANs, where the
likelihood of loss is small. They are also suited to situations in which low latency
is more important than reliability, such as for fast, interactive internet applications.
Finally, datagram invocations can be used to multicast messages to multiple
servers simultaneously.

Batched Datagram Invocations

As for batched oneway invocations, batched datagram invocations allow you to
accumulate a number of invocations in a buffer and then send the entire buffer as a
single datagram by making an API call to flush the buffer. Batched datagrams
reduce the overhead of repeated system calls and allow the underlying network to
operate more efficiently. However, batched datagram invocations are useful only
for batched messages whose total size does not substantially exceed the PDU limit
of the network: if the size of a batched datagram gets too large, UDP fragmenta-
tion makes it more likely that one or more fragments are lost, which results in the

2.2 The Ice Architecture 19

2.2.3

loss of the entire batched message. However, you are guaranteed that either all
invocations in a batch will be delivered, or none will be delivered. It is impossible
for individual invocations within a batch to be lost.

Batched datagrams use a single thread in the server to dispatch the individual
invocations in a batch. This guarantees that the invocations are made in the order
in which they were queued—invocations cannot appear to be reordered in the
server.

Run-Time Exceptions

Any operation invocation can raise a run-time exception. Run-time exceptions are
pre-defined by the Ice run time and cover common error conditions, such as
connection failure, connection timeout, or resource allocation failure. Run-time
exceptions are presented to the application as native exceptions and so integrate
neatly with the native exception handling capabilities of languages that support
exception handling.

User Exceptions

User exceptions are used to indicate application-specific error conditions to
clients. User exceptions can carry an arbitrary amount of complex data and can be
arranged into inheritance hierarchies, which makes it easy for clients to handle
categories of errors generically, by catching an exception that is further up the
inheritance hierarchy. Like run-time exceptions, user exceptions map to native
exceptions.

Properties

Much of the Ice run time is configurable via properties. Properties are name—value
pairs, such as Ice.Default .Protocol=tcp. Properties are typically stored
in text files and parsed by the Ice run time to configure various options, such as the
thread pool size, the level of tracing, and various other configuration parameters.

Slice (Specification Language for Ice)

As mentioned on page 9, each Ice object has an interface with a number of opera-
tions. Interfaces, operations, and the types of data that are exchanged between
client and server are defined using the Slice language. Slice allows you to define
the client-server contract in a way that is independent of a specific programming
language, such as C++, Java, or C#. The Slice definitions are compiled by a
compiler into an API for a specific programming language, that is, the part of the

20 Ice Overview
API that is specific to the interfaces and types you have defined consists of gener-
ated code.

2.2.4 Language Mappings

The rules that govern how each Slice construct is translated into a specific
programming language are known as language mappings. For example, for the
C++ mapping (see Chapter 6), a Slice sequence appears as an STL vector,
whereas, for the Java mapping (see Chapter 10), a Slice sequence appears as a
Java array. In order to determine what the API for a specific Slice construct looks
like, you only need the Slice definition and knowledge of the language mapping
rules. The rules are simple and regular enough to make it unnecessary to read the
generated code to work out how to use the generated APL

Of course, you are free to peruse the generated code. However, as a rule, that is
inefficient because the generated code is not necessarily suitable for human
consumption. We recommend that you familiarize yourself with the language
mapping rules; that way, you can mostly ignore the generated code and need to
refer to it only when you are interested in some specific detail.

Currently, Ice provides language mappings for C++, Java, C#, Python, Objec-
tive-C, and, for the client side, PHP and Ruby.

http://www.zeroc.com/languages.html

2.2 The Ice Architecture 21

2.2.5 Client and Server Structure

Ice clients and servers have the logical internal structure shown in Figure 2.1

Client Application Server Application
A A A A A
\/ \J \i \i \
Proxy Ice API Ice API Skeleton Object
Code Adapter
Client Ice Core ‘/\ Server Ice Core
Network

Ice AP
BZ Generated Code

Figure 2.1. Ice Client and Server Structure

Both client and server consist of a mixture of application code, library code, and
code generated from Slice definitions:

® The Ice core contains the client- and server-side run-time support for remote
communication. Much of this code is concerned with the details of
networking, threading, byte ordering, and many other networking-related
issues that we want to keep away from application code. The Ice core is
provided as a number of libraries that client and server use.

* The generic part of the Ice core (that is, the part that is independent of the
specific types you have defined in Slice) is accessed through the Ice API. You
use the Ice API to take care of administrative chores, such as initializing and
finalizing the Ice run time. The Ice API is identical for clients and servers
(although servers use a larger part of the API than clients).

* The proxy code is generated from your Slice definitions and, therefore,
specific to the types of objects and data you have defined in Slice. The proxy
code has two major functions:

* It provides a down-call interface for the client. Calling a function in the
generated proxy API ultimately ends up sending an RPC message to the
server that invokes a corresponding function on the target object.

22

Ice Overview

* It provides marshaling and unmarshaling code.

Marshaling is the process of serializing a complex data structure, such as a
sequence or a dictionary, for transmission on the wire. The marshaling code
converts data into a form that is standardized for transmission and indepen-
dent of the endian-ness and padding rules of the local machine.

Unmarshaling is the reverse of marshaling, that is, deserializing data that
arrives over the network and reconstructing a local representation of the data
in types that are appropriate for the programming language in use.

* The skeleton code is also generated from your Slice definition and, therefore,
specific to the types of objects and data you have defined in Slice. The skel-
eton code is the server-side equivalent of the client-side proxy code: it
provides an up-call interface that permits the Ice run time to transfer the thread
of control to the application code you write. The skeleton also contains
marshaling and unmarshaling code, so the server can receive parameters sent
by the client, and return parameters and exceptions to the client.

* The object adapter is a part of the Ice API that is specific to the server side:
only servers use object adapters. An object adapter has several functions:

* The object adapter maps incoming requests from clients to specific methods
on programming-language objects. In other words, the object adapter tracks
which servants with what object identity are in memory.

* The object adapter is associated with one or more transport endpoints. If
more than one transport endpoint is associated with an adapter, the servants
incarnating objects within the adapter can be reached via multiple trans-
ports. For example, you can associate both a TCP/IP and a UDP endpoint
with an adapter, to provide alternate quality-of-service and performance
characteristics.

* The object adapter is responsible for the creation of proxies that can be
passed to clients. The object adapter knows about the type, identity, and
transport details of each of its objects and embeds the correct details when
the server-side application code requests the creation of a proxy.

Note that, as far as the process view is concerned, there are only two processes
involved: the client and the server. All the run time support for distributed commu-
nication is provided by the Ice libraries and the code that is generated from Slice
definitions. (For indirect proxies, a third process, IceGrid, is required to resolve
proxies to transport endpoints.)

2.3 Ice Services 23

2.2.6

2.3

The Ice Protocol

Ice provides an RPC protocol that can use either TCP/IP or UDP as an underlying
transport. In addition, Ice also allows you to use SSL as a transport, so all commu-
nication between client and server is encrypted.

The Ice protocol defines:

* a number of message types, such as request and reply message types,

* a protocol state machine that determines in what sequence different message
types are exchanged by client and server, together with the associated connec-
tion establishment and tear-down semantics for TCP/IP,

* encoding rules that determine how each type of data is represented on the
wire,

* a header for each message type that contains details such as the message type,
the message size, and the protocol and encoding version in use.

Ice also supports compression on the wire: by setting a configuration parameter,
you can arrange for all network traffic to be compressed to conserve bandwidth.
This is useful if your application exchanges large amounts of data between client
and server.

The Ice protocol is suitable for building highly-efficient event forwarding
mechanisms because it permits forwarding of a message without knowledge of the
details of the information inside a message. This means that messaging switches
need not do any unmarshaling and remarshaling of messages—they can forward a
message by simply treating it as an opaque buffer of bytes.

The Ice protocol also supports bidirectional operation: if a server wants to
send a message to a callback object provided by the client, the callback can be
made over the connection that was originally created by the client. This feature is
especially important when the client is behind a firewall that permits outgoing
connections, but not incoming connections.

Ice Services

The Ice core provides a sophisticated client—server platform for distributed appli-
cation development. However, realistic applications usually require more than just
a remoting capability: typically, you also need a way to start servers on demand,
distribute proxies to clients, distribute asynchronous events, configure your appli-
cation, distribute patches for an application, and so on.

24

Ice Overview

2.3.1

2.3.2

Ice ships with a number of services that provide these and other features. The
services are implemented as Ice servers to which your application acts as a client.
None of the services use Ice-internal features that are hidden from application
developers so, in theory, you could develop equivalent services yourself. However,
having these services available as part of the platform allows you to focus on
application development instead of having to build a lot of infrastructure first.
Moreover, building such services is not a trivial effort, so it pays to know what is
available and use it instead of reinventing your own wheel.

Freeze and FreezeScript

Ice has a built-in object persistence service, known as Freeze. Freeze makes it
easy to store object state in a database: you define the state stored by your objects
in Slice, and the Freeze compiler generates code that stores and retrieves object
state to and from a database. Freeze uses Berkeley DB [18] as its database. We
discuss Freeze in detail in Chapter 39.

Ice also offers a tool called FreezeScript that makes it easier to maintain data-
bases and to migrate the contents of existing databases to a new schema if the type
definitions of objects change. We discuss FreezeScript in Chapter 40.

lceGrid

IceGrid is an implementation of an Ice location service that resolves the symbolic
information in an indirect proxy to a protocol-address pair for indirect binding. A
location service is only the beginning of IceGrid’s capabilities:

* IceGrid allows you to register servers for automatic start-up: instead of
requiring a server to be running at the time a client issues a request, IceGrid
starts servers on demand, when the first client request arrives.

* IceGrid provides tools that make it easy to configure complex applications
containing several servers.

* IceGrid supports replication and load-balancing.

¢ JceGrid automates the distribution and patching of server executables and
dependent files.

* IceGrid provides a simple query service that allows clients to obtain proxies
for objects they are interested in.

2.3 Ice Services 25

2.3.3

2.3.4

2.3.5

lceBox

IceBox is a simple application server that can orchestrate the starting and stopping
of a number of application components. Application components can be deployed
as a dynamic library instead of as a process. This reduces overall system load, for
example, by allowing you to run several application components in a single Java
virtual machine instead of having multiple processes, each with its own virtual
machine.

IlceStorm

IceStorm is a publish—subscribe service that decouples clients and servers. Funda-
mentally, IceStorm acts as a distribution switch for events. Publishers send events
to the service, which, in turn, passes the events to subscribers. In this way, a single
event published by a publisher can be sent to multiple subscribers. Events are
categorized by topic, and subscribers specify the topics they are interested in.
Only events that match a subscriber’s topic are sent to that subscriber. The service
permits selection of a number of quality-of-service criteria to allow applications to
choose the appropriate trade-off between reliability and performance.

IceStorm is particularly useful if you have a need to distribute information to
large numbers of application components. (A typical example is a stock ticker
application with a large number of subscribers.) IceStorm decouples the
publishers of information from subscribers and takes care of the redistribution of
the published events. In addition, IceStorm can be run as a federated service, that
is, multiple instances of the service can be run on different machines to spread the
processing load over a number of CPUs.

IcePatch2

IcePatch2? is a software patching service. It allows you to easily distribute soft-
ware updates to clients. Clients simply connect to the IcePatch?2 server and request
updates for a particular application. The service automatically checks the version
of the client’s software and downloads any updated application components in a
compressed format to conserve bandwidth. Software patches can be secured using
the Glacier2 service, so only authorized clients can download software updates.

2. IcePatch2 supersedes IcePatch, which was a previous version of this service.

26

Ice Overview

2.3.6 Glacier2

24

Glacier2? is the Ice firewall traversal service: it allows clients and servers to
securely communicate through a firewall without compromising security. Client-
server traffic is SSL-encrypted using public key certificates and is bidirectional.
Glacier?2 offers support for mutual authentication as well as secure session
management.

Architectural Benefits of Ice

The Ice architecture provides a number of benefits to application developers:

® Object-oriented semantics

Ice fully preserves the object-oriented paradigm “across the wire.” All opera-
tion invocations use late binding, so the implementation of an operation is
chosen depending on the actual run-time (not static) type of an object.

Support for synchronous and asynchronous messaging

Ice provides both synchronous and asynchronous operation invocation and
dispatch, as well as publish—subscribe messaging via IceStorm. This allows
you to choose a communication model according to the needs of your applica-
tion instead of having to shoe-horn the application to fit a single model.

Support for multiple interfaces

With facets, objects can provide multiple, unrelated interfaces while retaining
a single object identity across these interfaces. This provides great flexibility,
particularly as an application evolves but needs to remain compatible with
older, already deployed clients.

Machine independence

Clients and servers are shielded form idiosyncrasies of the underlying
machine architecture. Issues such as byte ordering and padding are hidden
from application code.

Language independence

Client and server can be developed independently and in different program-
ming languages. The Slice definition used by both client and server estab-

3. Glacier2 supersedes Glacier, which was a previous version of this service.

2.4 Architectural Benefits of Ice 27

lishes the interface contract between them and is the only thing they need to
agree on.

¢ Implementation independence

Clients are unaware of how servers implement their objects. This means that
the implementation of a server can be changed after clients are deployed, for
example, to use a different persistence mechanism or even a different
programming language.

® Operating system independence

The Ice APIs are fully portable, so the same source code compiles and runs
under both Windows and Unix.

* Threading support

The Ice run time is fully threaded and APIs are thread-safe. No effort (beyond
synchronizing access to shared data) is required on part of the application
developer to develop threaded, high-performance clients and servers.

® Transport independence

Ice currently offers both TCP/IP and UDP as transport protocols. Neither
client nor server code are aware of the underlying transport. (The desired
transport can be chosen by a configuration parameter.)

® Location and server transparency

The Ice run time takes care of locating objects and managing the underlying
transport mechanism, such as opening and closing connections. Interactions
between client and server appear connection-less. Via IceGrid, you can
arrange for servers to be started on demand if they are not running at the time
a client invokes an operation. Servers can be migrated to different physical
addresses without breaking proxies held by clients, and clients are completely
unaware how object implementations are distributed over server processes.

* Security

Communications between client and server can be fully secured with strong
encryption over SSL, so applications can use unsecured public networks to
communicate securely. Via Glacier2, you can implement secure forwarding of
requests through a firewall, with full support for callbacks.

* Built-in persistence

With Freeze, creating persistent object implementations becomes trivial. Ice
comes with built-in support for Berkeley DB [18], which is a high-perfor-
mance database.

28 Ice Overview

* Source code availability

The source code for Ice is available. While it is not necessary to have access to
the source code to use the platform, it allows you to see how things are imple-
mented or port the code to a new operating system.

Overall, Ice provides a state-of-the art development and deployment environment
for distributed computing that is more complete than any other platform we are
aware of.

Chapter 3
A Hello World Application

3.1

Chapter Overview

In this chapter, we will see how to create a very simple client—server application in
C++ (Section 3.3), Java (Section 3.4), C# (Section 3.5), Visual Basic

(Section 3.6), Objective-C (Section 3.7), Python (Section 3.8), Ruby

(Section 3.9), and PHP (Section 3.10). Rather than reading the entire chapter, we
suggest that you read Section 3.2 and then skip to the section that deals with the
programming language of your choice.

The application enables remote printing: a client sends the text to be printed to
a server, which in turn sends that text to a printer. For simplicity (and because we
do not want to concern ourselves with the idiosyncrasies of print spoolers for
various platforms), our printer will simply print to a terminal instead of a real
printer. This is no great loss: the purpose of the exercise is to show how a client
can communicate with a server; once the thread of control has reached the server
application code, that code can of course do anything it likes (including sending
the text to a real printer). How to do this is independent of Ice and therefore not
relevant here.

Note that much of the detail of the source code will remain unexplained for
now. The intent is to show you how to get started and give you a feel for what the
development environment looks like; we will provide all the detail throughout the
remainder of this book.

29

30

A Hello World Application

3.2

Writing a Slice Definition

3.3

The first step in writing any Ice application is to write a Slice definition containing
the interfaces that are used by the application. For our minimal printing applica-
tion, we write the following Slice definition:

module Demo {
interface Printer {
void printString(string s);
1
};

We save this text in a file called Printer.ice.

Our Slice definitions consist of the module Demo containing a single interface
called Printer. For now, the interface is very simple and provides only a single
operation, called printString. The printString operation accepts a string as its
sole input parameter; the text of that string is what appears on the (possibly
remote) printer.

Writing an Ice Application with C++

This section shows how to create an Ice application with C++.

Compiling a Slice Definition for C++

The first step in creating our C++ application is to compile our Slice definition to
generate C++ proxies and skeletons. Under Unix, you can compile the definition
as follows:

S slice2cpp Printer.ice
The slice2cpp compiler produces two C++ source files from this definition,
Printer.hand Printer.cpp.

®* Printer.h

The Printer.h header file contains C++ type definitions that correspond to
the Slice definitions for our Printer interface. This header file must be
included in both the client and the server source code.

®* Printer.cpp

The Printer. cpp file contains the source code for our Printer interface.
The generated source contains type-specific run-time support for both clients

3.3 Writing an Ice Application with C++ 31

and servers. For example, it contains code that marshals parameter data (the
string passed to the printString operation) on the client side and unmarshals
that data on the server side.

The Printer. cpp file must be compiled and linked into both client and
server.

Writing and Compiling a Server
The source code for the server takes only a few lines and is shown in full here:

#include <Ice/Ice.h>
#include <Printer.h>

using namespace std;
using namespace Demo;

class PrinterI : public Printer ({
public:
virtual void printString(const string& s,
const Ice::Currenté&) ;

}i

void
PrinterI::
printString(const string& s, const Ice::Currenté&)

{
}

cout << s << endl;

int
main (int argc, char* argv[])
{
int status = 0;
Ice: :CommunicatorPtr ic;
try {
ic = Ice::initialize(argc, argv);
Ice: :0ObjectAdapterPtr adapter
= ic->createObjectAdapterWithEndpoints (
"SimplePrinterAdapter", "default -p 10000");
Ice::0bjectPtr object = new PrinterI;
adapter->add (object,
ic->stringTolIdentity ("SimplePrinter")) ;
adapter->activate() ;
ic->waitForShutdown () ;
} catch (const Ice::Exception& e) {

A Hello World Application

cerr << e << endl;
status = 1;

} catch (const char* msg) {
cerr << msg << endl;
status = 1;

}
if (ic) {
try {
ic->destroy () ;
} catch (const Ice::Exception& e) ({
cerr << e << endl;
status = 1;
}
}

return status;

}

There appears to be a lot of code here for something as simple as a server that just
prints a string. Do not be concerned by this: most of the preceding code is boiler
plate that never changes. For this very simple server, the code is dominated by this
boiler plate.

Every Ice source file starts with an include directive for Ice . h, which
contains the definitions for the Ice run time. We also include Printer . h, which
was generated by the Slice compiler and contains the C++ definitions for our
printer interface, and we import the contents of the std and Demo namespaces
for brevity in the code that follows:

#include <Ice/Ice.h>
#include <Printer.h>

using namespace std;
using namespace Demo;

Our server implements a single printer servant, of type PrinterI. Looking at
the generated code in Printer.h, we find the following (tidied up a little to get
rid of irrelevant detail):

namespace Demo {
class Printer : virtual public Ice::Object
public:
virtual void printString(const std::stringé&,
const Ice::Currenté&

3.3 Writing an Ice Application with C++ 33

= Ice::Current ()
) = 0;
}i
}i
The Printer skeleton class definition is generated by the Slice compiler. (Note
that the printString method is pure virtual so the skeleton class cannot be
instantiated.) Our servant class inherits from the skeleton class to provide an
implementation of the pure virtual print String method. (By convention, we
use an I-suffix to indicate that the class implements an interface.)

class PrinterI : public Printer ({
public:
virtual void printString(const string& s,
const Ice::Currenté&) ;

}i

The implementation of the print String method is trivial: it simply writes its
string argument to stdout:

void

PrinterI::
printString(const string& s, const Ice::Currenté&)

{
}

Note that printString has a second parameter of type Ice: : Current. As
you can see from the definition of Printer: :printString, the Slice
compiler generates a default argument for this parameter, so we can leave it
unused in our implementation. (We will examine the purpose of the
Ice: :Current parameter in Section 32.6.)

What follows is the server main program. Note the general structure of the
code:

cout << s << endl;

int

main (int argc, char* argv[])
int status = 0;
Ice: :CommunicatorPtr ic;

try {
// Server implementation here...

} catch (const Ice::Exception& e) {
cerr << e << endl;

A Hello World Application

status = 1;

} catch (const char* msg) {
cerr << msg << endl;
status = 1;

}
if (ic) {
try {
ic->destroy () ;
} catch (const Ice::Exception& e)
cerr << e << endl;
status = 1;
}
}

return status;

}

The body of main contains the declaration of two variables, status and ic.
The status variable contains the exit status of the program and the ic variable,
of type Ice: : CommunicatorPtr, contains the main handle to the Ice run
time.

Following these declarations is a try block in which we place all the server
code, followed by two catch handlers. The first handler catches all exceptions
that may be thrown by the Ice run time; the intent is that, if the code encounters an
unexpected Ice run-time exception anywhere, the stack is unwound all the way
back to main, which prints the exception and then returns failure to the operating
system. The second handler catches string constants; the intent is that, if we
encounter a fatal error condition somewhere in our code, we can simply throw a
string literal with an error message. Again, this unwinds the stack all the way back
to main, which prints the error message and then returns failure to the operating
system.

Following the t ry block, we see a bit of cleanup code that calls the destroy
method on the communicator (provided that the communicator was initialized).
The cleanup call is outside the first t ry block for a reason: we must ensure that
the Ice run time is finalized whether the code terminates normally or terminates
due to an exception.!

The body of the first try block contains the actual server code:

1. Failure to call destroy on the communicator before the program exits results in undefined
behavior.

3.3 Writing an Ice Application with C++ 35

ic = Ice::initialize(argc, argv);
Ice: :0bjectAdapterPtr adapter
= ic->createObjectAdapterWithEndpoints (
"SimplePrinterAdapter", "default -p 10000");
Ice::0bjectPtr object = new PrinterI;
adapter->add(object, ic->stringTolIdentity ("SimplePrinter")

adapter->activate() ;
ic->waitForShutdown () ;

The code goes through the following steps:

1.

We initialize the Ice run time by calling Ice: :initialize. (We pass
argc and argv to this call because the server may have command-line argu-
ments that are of interest to the run time; for this example, the server does not
require any command-line arguments.) The call to initialize returns a
smart pointer to an Ice: : Communicator object, which is the main handle to
the Ice run time.

. We create an object adapter by calling createObjectAdapterWith-

Endpoints on the Communicator instance. The arguments we pass are
"SimplePrinterAdapter (which is the name of the adapter) and
"default -p 10000", which instructs the adapter to listen for incoming
requests using the default protocol (TCP/IP) at port number 10000.

. At this point, the server-side run time is initialized and we create a servant for

our Printer interface by instantiating a PrinterI object.

. We inform the object adapter of the presence of a new servant by calling add

on the adapter; the arguments to add are the servant we have just instantiated,
plus an identifier. In this case, the string "SimplePrinter" is the name of
the servant. (If we had multiple printers, each would have a different name or,
more correctly, a different object identity.)

. Next, we activate the adapter by calling its act ivate method. (The adapter

is initially created in a holding state; this is useful if we have many servants
that share the same adapter and do not want requests to be processed until after
all the servants have been instantiated.) The server starts to process incoming
requests from clients as soon as the adapter is activated.

. Finally, we call waitForShutdown. This call suspends the calling thread

until the server implementation terminates, either by making a call to shut
down the run time, or in response to a signal. (For now, we will simply inter-
rupt the server on the command line when we no longer need it.)

36

A Hello World Application

Note that, even though there is quite a bit of code here, that code is essentially the
same for all servers. You can put that code into a helper class and, thereafter, will
not have to bother with it again. (Ice ships with such a helper class, called
Ice: :Application—see Section 8.3.1.) As far as actual application code is
concerned, the server contains only a few lines: six lines for the definition of the
PrinterT class, plus three? lines to instantiate a PrinterI object and register
it with the object adapter.

Assuming that we have the server code in a file called Server. cpp, we can
compile it as follows:

$ c++ -I. -I$ICE HOME/include -c Printer.cpp Server.cpp

This compiles both our application code and the code that was generated by the
Slice compiler. We assume that the ICE_HOME environment variable is set to the
top-level directory containing the Ice run time. (For example, if you have installed
Icein /opt/Ice, set ICE_HOME to that path.) Depending on your platform, you
may have to add additional include directives or other options to the compiler
(such as an include directive for the STLport headers, or to control template
instantiation); please see the demo programs that ship with Ice for the details.
Finally, we need to link the server into an executable:

S c++ -0 server Printer.o Server.o \
-L$ICE HOME/lib -1Ice -1lIceUtil

Again, depending on the platform, the actual list of libraries you need to link
against may be longer. The demo programs that ship with Ice contain all the detail.
The important point to note here is that the Ice run time is shipped in two libraries,
libIce and 1ibIceUtil.

Writing and Compiling a Client
The client code looks very similar to the server. Here it is in full:

#include <Ice/Ice.h>
#include <Printer.h>

using namespace std;
using namespace Demo;

int

2. Well, two lines, really: printing space limitations force us to break source lines more often than
you would in your actual source files.

3.3 Writing an Ice Application with C++ 37

main (int argc, char* argv(])

{

}

int status = 0;
Ice: :CommunicatorPtr ic;
try {
ic = Ice::initialize(argc, argv);
Ice: :0bjectPrx base = ic->stringToProxy (

"SimplePrinter:default -p 10000");
PrinterPrx printer = PrinterPrx::checkedCast (base) ;
if (!printer)
throw "Invalid proxy";

printer-s>printString("Hello World!") ;
} catch (const Ice::Exception& ex) {
cerr << ex << endl;
status = 1;
} catch (const char* msg)
cerr << msg << endl;
status = 1;
}
if (ic)
ic->destroy () ;
return status;

Note that the overall code layout is the same as for the server: we include the
headers for the Ice run time and the header generated by the Slice compiler, and
we use the same try block and catch handlers to deal with errors.

The code in the t ry block does the following:

. As for the server, we initialize the Ice run time by calling

Ice::initialize.

. The next step is to obtain a proxy for the remote printer. We create a proxy by

calling stringToProxy on the communicator, with the string
"SimplePrinter:default -p 10000". Note that the string contains
the object identity and the port number that were used by the server. (Obvi-
ously, hard-coding object identities and port numbers into our applications is a
bad idea, but it will do for now; we will see more architecturally sound ways
of doing this in Chapter 38.)

. The proxy returned by stringToProxy is of type Ice: : ObjectPrx,

which is at the root of the inheritance tree for interfaces and classes. But to
actually talk to our printer, we need a proxy for a Printer interface, not an
Object interface. To do this, we need to do a down-cast by calling Print -

38

A Hello World Application

erPrx: :checkedCast. A checked cast sends a message to the server,
effectively asking “is this a proxy for a Printer interface?” If so, the call
returns a proxy to a Printer; otherwise, if the proxy denotes an interface of
some other type, the call returns a null proxy.

4. We test that the down-cast succeeded and, if not, throw an error message that
terminates the client.

5. We now have a live proxy in our address space and can call the print-
String method, passing it the time-honored "Hello World!r string. The
server prints that string on its terminal.

Compiling and linking the client looks much the same as for the server:

$ c++ -I. -ISICE HOME/include -c Printer.cpp Client.cpp
$ c++ -o client Printer.o Client.o -L$ICE HOME/lib -1lIce -1IceUtil

Running Client and Server
To run client and server, we first start the server in a separate window:
$./server

At this point, we won’t see anything because the server simply waits for a client to
connect to it. We run the client in a different window:

$./client
$

The client runs and exits without producing any output; however, in the server
window, we see the "Hello World! " thatis produced by the printer. To get rid
of the server, we interrupt it on the command line for now. (We will see cleaner
ways to terminate a server in Section 8.3.1.)

If anything goes wrong, the client will print an error message. For example, if
we run the client without having first started the server, we get:

Network.cpp:471: Ice::ConnectFailedException:
connect failed: Connection refused

Note that, to successfully run client and server, you will have to set some plat-
form-dependent environment variables. For example, under Linux, you need to
add the Ice library directory to your LD LIBRARY PATH. Please have a look at
the demo applications that ship with Ice for the details for your platform.

3.4 Writing an Ice Application with Java 39

3.4 Writing an Ice Application with Java

This section shows how to create an Ice application with Java.

Compiling a Slice Definition for Java

The first step in creating our Java application is to compile our Slice definition to
generate Java proxies and skeletons. Under Unix, you can compile the definition
as follows:>

$ mkdir generated
$ slice2java --output-dir generated Printer.ice

The - -output-dir option instructs the compiler to place the generated files
into the generated directory. This avoids cluttering the working directory with
the generated files. The slice2java compiler produces a number of Java
source files from this definition. The exact contents of these files do not concern
us for now—they contain the generated code that corresponds to the Printer
interface we defined in Printer. ice.

Writing and Compiling a Server

To implement our Printer interface, we must create a servant class. By conven-
tion, servant classes use the name of their interface with an I-suffix, so our servant
class is called PrinterI and placed into a source file PrinterI.java:

public class PrinterI extends Demo. PrinterDisp {
public void
printString(String s, Ice.Current current)

{
}

System.out.println(s) ;

}

The PrinterT class inherits from a base class called PrinterDisp, which
is generated by the slice2java compiler. The base class is abstract and
contains a printString method that accepts a string for the printer to print and
a parameter of type Ice.Current. (For now we will ignore the
Ice.Current parameter. We will see its purpose in detail in Section 32.6.) Our

3. Whenever we show Unix commands in this book, we assume a Bourne or Bash shell. The
commands for Windows are essentially identical and therefore not shown.

40

A Hello World Application

implementation of the print String method simply writes its argument to the
terminal.

The remainder of the server code is in a source file called Server. java,
shown in full here:

public class Server {
public static void
main (String[] args)
{
int status = 0;
Ice.Communicator ic = null;
try {
ic = Ice.Util.initialize(args);
Ice.ObjectAdapter adapter
= ic.createObjectAdapterWithEndpoints (
"SimplePrinterAdapter", "default -p 10000");
Ice.Object object = new PrinterI();
adapter.add (
object,
ic.stringToIdentity ("SimplePrinter")) ;
adapter.activate() ;
ic.waitForShutdown () ;
} catch (Ice.LocalException e)
e.printStackTrace() ;
status = 1;
} catch (Exception e) {
System.err.println(e.getMessage()) ;
status = 1;
}
if (ic != null) {
// Clean up
//
try {
ic.destroy () ;
} catch (Exception e) ({
System.err.println(e.getMessage()) ;
status = 1;
}
}

System.exit (status) ;

Note the general structure of the code:

3.4 Writing an Ice Application with Java 41

public class Server {
public static void

main (String[] args)
int status = 0;
Ice.Communicator ic = null;
try {
ic = Ice.Util.initialize(args) ;

Ice.ObjectAdapter adapter
= ic.createObjectAdapterWithEndpoints (
"SimplePrinterAdapter", "default -p 10000");
Ice.Object object = new PrinterI();
adapter.add (
object,
ic.stringToIdentity ("SimplePrinter")) ;
adapter.activate() ;
ic.waitForShutdown () ;
} catch (Ice.LocalException e) ({
e.printStackTrace () ;
status = 1;
} catch (Exception e) {
System.err.println(e.getMessage()) ;
status = 1;
}
if (ic != null) {
// Clean up
//

try {
ic.destroy () ;

} catch (Exception e) ({
System.err.println(e.getMessage()) ;
status = 1;

}
}

System.exit (status) ;

}

The body of main contains a try block in which we place all the server code,
followed by two catch blocks. The first block catches all exceptions that may be
thrown by the Ice run time; the intent is that, if the code encounters an unexpected
Ice run-time exception anywhere, the stack is unwound all the way back to main,
which prints the exception and then returns failure to the operating system. The
second block catches Except ion exceptions; the intent is that, if we encounter a
fatal error condition somewhere in our code, we can simply throw an exception

42

A Hello World Application

with an error message. Again, this unwinds the stack all the way back to main,
which prints the error message and then returns failure to the operating system.

Before the code exits, it destroys the communicator (if one was created

successfully). Doing this is essential in order to correctly finalize the Ice run time:
the program must call destroy on any communicator it has created; otherwise,
undefined behavior results.

The body of our try block contains the actual server code:

ic = Ice.Util.initialize(args);
Ice.ObjectAdapter adapter
= ic.createObjectAdapterWithEndpoints (
"SimplePrinterAdapter", "default -p 10000");
Ice.Object object = new PrinterI();
adapter.add (
object,
ic.stringToIdentity ("SimplePrinter")) ;
adapter.activate() ;
ic.waitForShutdown () ;

The code goes through the following steps:

1.

We initialize the Ice run time by calling Ice.Util.initialize. (We
pass args to this call because the server may have command-line arguments
that are of interest to the run time; for this example, the server does not require
any command-line arguments.) The call to initialize returns an

Ice: :Communicator reference, which is the main handle to the Ice run time.

. We create an object adapter by calling createObjectAdapterWith-

Endpoints on the Communicator instance. The arguments we pass are
"SimplePrinterAdapter" (which is the name of the adapter) and
"default -p 10000", which instructs the adapter to listen for incoming
requests using the default protocol (TCP/IP) at port number 10000.

. At this point, the server-side run time is initialized and we create a servant for

our Printer interface by instantiating a PrinterI object.

. We inform the object adapter of the presence of a new servant by calling add

on the adapter; the arguments to add are the servant we have just instantiated,
plus an identifier. In this case, the string "SimplePrinter is the name of
the servant. (If we had multiple printers, each would have a different name or,
more correctly, a different object identity.)

. Next, we activate the adapter by calling its act ivate method. (The adapter

is initially created in a holding state; this is useful if we have many servants

3.4 Writing an Ice Application with Java 43

that share the same adapter and do not want requests to be processed until after
all the servants have been instantiated.)

6. Finally, we call waitForShutdown. This call suspends the calling thread
until the server implementation terminates, either by making a call to shut
down the run time, or in response to a signal. (For now, we will simply inter-
rupt the server on the command line when we no longer need it.)

Note that, even though there is quite a bit of code here, that code is essentially the
same for all servers. You can put that code into a helper class and, thereafter, will
not have to bother with it again. (Ice ships with such a helper class, called
Ice.Application—see Section 12.3.1.) As far as actual application code is
concerned, the server contains only a few lines: seven lines for the definition of
the PrinterT class, plus four® lines to instantiate a PrinterI object and
register it with the object adapter.

We can compile the server code as follows:

S mkdir classes
$ javac -d classes -classpath classes:$ICEJ HOME/lib/Ice.jar\
-source 1.4 Server.java PrinterI.java generated/Demo/*.java

This compiles both our application code and the code that was generated by the
Slice compiler. We assume that the ICEJ HOME environment variable is set to
the top-level directory containing the Ice run time. (For example, if you have
installed Ice in /opt/Ice], set ICEJ HOME to that path.) Note that Ice for Java
uses the ant build environment to control building of source code. (ant is
similar to make, but more flexible for Java applications.) You can have a look at
the demo code that ships with Ice to see how to use this tool.

Writing and Compiling a Client

The client code, in Client . java, looks very similar to the server. Here it is in
full:

public class Client {
public static void
main (String[] args)
{
int status = 0;
Ice.Communicator ic = null;

4. Well, two lines, really: printing space limitations force us to break source lines more often than
you would in your actual source files.

44

A Hello World Application

}

try {
ic = Ice.Util.initialize(args) ;
Ice.ObjectPrx base = ic.stringToProxy (

"SimplePrinter:default -p 10000");
Demo.PrinterPrx printer
= Demo.PrinterPrxHelper.checkedCast (base) ;
if (printer == null)
throw new Error ("Invalid proxy") ;

printer.printString("Hello World!") ;
} catch (Ice.LocalException e) ({
e.printStackTrace () ;
status = 1;
} catch (Exception e) {
System.err.println(e.getMessage()) ;
status = 1;

}

if (ic != null) {
// Clean up
//
try {

ic.destroy () ;
} catch (Exception e) ({
System.err.println(e.getMessage()) ;
status = 1;
}
}

System.exit (status) ;

Note that the overall code layout is the same as for the server: we use the same
try and catch blocks to deal with errors. The code in the t ry block does the
following:

1. As for the server, we initialize the Ice run time by calling
Ice.Util.initialize.

. The next step is to obtain a proxy for the remote printer. We create a proxy by
calling stringToProxy on the communicator, with the string
"SimplePrinter:default -p 10000". Note that the string contains
the object identity and the port number that were used by the server. (Obvi-
ously, hard-coding object identities and port numbers into our applications is a
bad idea, but it will do for now; we will see more architecturally sound ways
of doing this in Chapter 38.)

3.4 Writing an Ice Application with Java 45

3. The proxy returned by stringToProxy is of type Ice::0bjectPrx, which is
at the root of the inheritance tree for interfaces and classes. But to actually talk
to our printer, we need a proxy for a Printer interface, not an Object inter-
face. To do this, we need to do a down-cast by calling PrinterPrx-
Helper.checkedCast. A checked cast sends a message to the server,
effectively asking “is this a proxy for a Printer interface?” If so, the call
returns a proxy of type Demo: : Printer; otherwise, if the proxy denotes an
interface of some other type, the call returns null.

4. We test that the down-cast succeeded and, if not, throw an error message that
terminates the client.

5. We now have a live proxy in our address space and can call the print-
String method, passing it the time-honored "Hello World! string. The
server prints that string on its terminal.

Compiling the client looks much the same as for the server:

$ javac -d classes -classpath classes:$ICEJ HOME/lib/Ice.jar\
-source 1.4 Client.java PrinterI.java generated/Demo/*.java

Running Client and Server
To run client and server, we first start the server in a separate window:
$ java Server

At this point, we won’t see anything because the server simply waits for a client to
connect to it. We run the client in a different window:

$ java Client

$

The client runs and exits without producing any output; however, in the server
window, we see the "Hello World! thatis produced by the printer. To get rid
of the server, we interrupt it on the command line for now. (We will see cleaner
ways to terminate a server in Chapter 12.)

If anything goes wrong, the client will print an error message. For example, if
we run the client without having first started the server, we get something like the
following:

Ice.ConnectFailedException
at IcelInternal.Network.doConnect (Network.java:201)
at IcelInternal.TcpConnector.connect (TcpConnector.java:26)
at

IceInternal.OutgoingConnectionFactory.create (OutgoingConnectionFac
tory.java:80)

A Hello World Application

at Ice. ObjectDelM.setup(ObjectDelM.java:251)

at Ice.ObjectPrxHelper. getDelegate (ObjectPrxHelper.java:
642)

at Ice.ObjectPrxHelper.ice_ isA(ObjectPrxHelper.java:41)

at Ice.ObjectPrxHelper.ice isA(ObjectPrxHelper.java:30)

at Demo.PrinterPrxHelper.checkedCast (Unknown Source)

at Client.main (Unknown Source)
Caused by: java.net.ConnectException: Connection refused

at sun.nio.ch.SocketChannelImpl.checkConnect (Native Method
)

at
sun.nio.ch.SocketChannelImpl.finishConnect (SocketChannelImpl.java:
518)

at IcelInternal.Network.doConnect (Network.java:173)

8 more

Note that, to successfully run client and server, your CLASSPATH must include
the Ice library and the classes directory, for example:

$ export CLASSPATH=$CLASSPATH:./classes:$ICEJ HOME/lib/Ice.jar

Please have a look at the demo applications that ship with Ice for the details for
your platform.

Writing an Ice Application with C#

This section shows how to create an Ice application with C#.

Compiling a Slice Definition for C#

The first step in creating our C# application is to compile our Slice definition to
generate C# proxies and skeletons. You can compile the definition as follows:

$ mkdir generated
$ slice2cs --output-dir generated Printer.ice

The - -output-dir option instructs the compiler to place the generated files
into the generated directory. This avoids cluttering the working directory with
the generated files. The s1ice2cs compiler produces a single source file,
Printer.cs, from this definition. The exact contents of this file do not concern
us for now—it contains the generated code that corresponds to the Printer inter-
face we defined in Printer.ice.

3.5 Writing an Ice Application with C# 47

Writing and Compiling a Server

To implement our Printer interface, we must create a servant class. By conven-
tion, servant classes use the name of their interface with an I-suffix, so our servant
class is called PrinterTI and placed into a source file Server.cs:

using System;

public class PrinterI : Demo.PrinterDisp

{

public override void printString(string s, Ice.Current current)

{
}

Console.WriteLine(s) ;

}

The PrinterT class inherits from a base class called PrinterDisp, which
is generated by the s1ice2cs compiler. The base class is abstract and contains a
printString method that accepts a string for the printer to print and a param-
eter of type Ice.Current. (For now we will ignore the Ice.Current param-
eter. We will see its purpose in detail in Section 32.6.) Our implementation of the
printString method simply writes its argument to the terminal.

The remainder of the server code follows in Server. cs and is shown in full

here:
public class Server
{
public static void Main(string[] args)
{
int status = 0;
Ice.Communicator ic = null;
try {
ic = Ice.Util.initialize(ref args);

Ice.ObjectAdapter adapter
= ic.createObjectAdapterWithEndpoints (

"SimplePrinterAdapter", "default -p 10000");
Ice.Object obj = new PrinterI();
adapter.add (

obj,

ic.stringToIdentity ("SimplePrinter")) ;
adapter.activate() ;
ic.waitForShutdown () ;
} catch (Exception e) {
Console.Error.WriteLine (e) ;
status = 1;

48 A Hello World Application

if (ic != null) {
// Clean up
//
try {

ic.destroy () ;

} catch (Exception e) ({
Console.Error.WriteLine (e) ;
status = 1;

}
}

Environment .Exit (status) ;

}
Note the general structure of the code:

public class Server

{
public static void Main(string[] args)
{
int status = 0;
Ice.Communicator ic = null;
try {
// Server implementation here...
} catch (Exception e) {
Console.Error.WriteLine (e) ;
status = 1;
1
if (ic != null) {
// Clean up
//
try {
ic.destroy () ;
} catch (Exception e) ({
Console.Error.WriteLine (e) ;
status = 1;
1
1
Environment .Exit (status) ;
1
1

The body of Main contains a try block in which we place all the server code,
followed by a catch block. The catch block catches all exceptions that may be

3.5 Writing an Ice Application with C# 49

thrown by the code; the intent is that, if the code encounters an unexpected run-
time exception anywhere, the stack is unwound all the way back to Main, which
prints the exception and then returns failure to the operating system.

Before the code exits, it destroys the communicator (if one was created

successfully). Doing this is essential in order to correctly finalize the Ice run time:
the program must call destroy on any communicator it has created; otherwise,
undefined behavior results.

The body of our try block contains the actual server code:

ic = Ice.Util.initialize(ref args);
Ice.ObjectAdapter adapter
= ic.createObjectAdapterWithEndpoints (

"SimplePrinterAdapter", "default -p 10000");
Ice.Object obj = new PrinterI();
adapter.add (

obj,

ic.stringToIdentity ("SimplePrinter")) ;
adapter.activate();
ic.waitForShutdown () ;

The code goes through the following steps:

1.

We initialize the Ice run time by calling Ice.Util.initialize. (We
pass args to this call because the server may have command-line arguments
that are of interest to the run time; for this example, the server does not require
any command-line arguments.) The call to initialize returns an

Ice: :Communicator reference, which is the main handle to the Ice run time.

. We create an object adapter by calling createObjectAdapterWith-

Endpoints on the Communicator instance. The arguments we pass are
"SimplePrinterAdapter" (which is the name of the adapter) and
"default -p 10000", which instructs the adapter to listen for incoming
requests using the default protocol (TCP/IP) at port number 10000.

. At this point, the server-side run time is initialized and we create a servant for

our Printer interface by instantiating a PrinterI object.

. We inform the object adapter of the presence of a new servant by calling add

on the adapter; the arguments to add are the servant we have just instantiated,
plus an identifier. In this case, the string "SimplePrinter is the name of
the servant. (If we had multiple printers, each would have a different name or,
more correctly, a different object identity.)

. Next, we activate the adapter by calling its act ivate method. (The adapter

is initially created in a holding state; this is useful if we have many servants

A Hello World Application

that share the same adapter and do not want requests to be processed until after
all the servants have been instantiated.)

6. Finally, we call waitForShutdown. This call suspends the calling thread
until the server implementation terminates, either by making a call to shut
down the run time, or in response to a signal. (For now, we will simply inter-
rupt the server on the command line when we no longer need it.)

Note that, even though there is quite a bit of code here, that code is essentially the
same for all servers. You can put that code into a helper class and, thereafter, will
not have to bother with it again. (Ice ships with such a helper class, called
Ice.Application—see Section 16.3.1.) As far as actual application code is
concerned, the server contains only a few lines: seven lines for the definition of
the PrinterI class, plus four’ lines to instantiate a PrinterI object and
register it with the object adapter.

We can compile the server code as follows:

$ csc /reference:Ice.dll /lib:%ICE_HOME%\bin Server.cs \
generated\Printer.cs

This compiles both our application code and the code that was generated by the
Slice compiler. We assume that the ICE_HOME environment variable is set to the
top-level directory containing the Ice run time. (For example, if you have installed
Icein C:\opt\Ice, set ICE HOME to that path.)

Writing and Compiling a Client
The client code, in Client . cs, looks very similar to the server. Here it is in full:

using System;
using Demo;

public class Client

{
public static void Main(string[] args)
{
int status = 0;
Ice.Communicator ic = null;
try {
ic = Ice.Util.initialize(ref args);
Ice.ObjectPrx obj = ic.stringToProxy (

5. Well, two lines, really: printing space limitations force us to break source lines more often than
you would in your actual source files.

3.5 Writing an Ice Application with C# 51

"SimplePrinter:default -p 10000");
PrinterPrx printer
= PrinterPrxHelper.checkedCast (obj) ;
if (printer == null)
throw new ApplicationException("Invalid proxy") ;

printer.printString ("Hello World!") ;
} catch (Exception e) {

Console.Error.WriteLine (e) ;

status = 1;

}

if (ic != null) {
// Clean up
//
try {

ic.destroy () ;

} catch (Exception e) ({
Console.Error.WriteLine (e) ;
status = 1;

}
}

Environment .Exit (status) ;

}

Note that the overall code layout is the same as for the server: we use the same
try and catch blocks to deal with errors. The code in the try block does the
following:

1. As for the server, we initialize the Ice run time by calling
Ice.Util.initialize.

2. The next step is to obtain a proxy for the remote printer. We create a proxy by
calling stringToProxy on the communicator, with the string
"SimplePrinter:default -p 10000". Note that the string contains
the object identity and the port number that were used by the server. (Obvi-
ously, hard-coding object identities and port numbers into our applications is a
bad idea, but it will do for now; we will see more architecturally sound ways
of doing this in Chapter 38.)

3. The proxy returned by stringToProxy is of type Ice: :0bjectPrx, which is
at the root of the inheritance tree for interfaces and classes. But to actually talk
to our printer, we need a proxy for a Printer interface, not an Object inter-
face. To do this, we need to do a down-cast by calling PrinterPrx-
Helper.checkedCast. A checked cast sends a message to the server,

52

A Hello World Application

effectively asking “is this a proxy for a Printer interface?” If so, the call
returns a proxy of type Demo: : Printer; otherwise, if the proxy denotes an
interface of some other type, the call returns null.

4. We test that the down-cast succeeded and, if not, throw an error message that
terminates the client.

5. We now have a live proxy in our address space and can call the print -
String method, passing it the time-honored "Hello World!r string. The
server prints that string on its terminal.

Compiling the client looks much the same as for the server:

$ csc /reference:Ice.dll /lib:%ICE_HOME%\bin Client.cs \
generated\Printer.cs

Running Client and Server
To run client and server, we first start the server in a separate window:
$ server.exe

At this point, we won’t see anything because the server simply waits for a client to
connect to it. We run the client in a different window:

S client.exe

$

The client runs and exits without producing any output; however, in the server
window, we see the "Hello World! " thatis produced by the printer. To get rid
of the server, we interrupt it on the command line for now. (We will see cleaner
ways to terminate a server in Chapter 16.)

If anything goes wrong, the client will print an error message. For example, if
we run the client without having first started the server, we get something like the
following:

Ice.ConnectionRefusedException
error = 0

at IcelInternal.ProxyFactory.checkRetryAfterException (LocalExcep
tion ex, Reference ref, Int32 cnt) in c:\cygwin\home\m
ichilsrc\ice\cs\src\Ice\ProxyFactory.cs:line 167

at Ice.ObjectPrxHelperBase.handleException (ObjectDel delegat
e, LocalException ex, Int32 cnt) in c:\cygwin\home\mic
hi\src\ice\cs\src\Ice\Proxy.cs:line 970

at Ice.ObjectPrxHelperBase.ice isA(String id , Dictionary~2 co
ntext , Boolean explicitContext) in c:\cygwin\home)\
michi\src\ice\cs\src\Ice\Proxy.cs:1line 201

at Ice.ObjectPrxHelperBase.ice isA(String id) in c:\cygwin\ho

3.6 Writing an Ice Application with Visual Basic 53

3.6

me\michi\src\ice\cs\src\Ice\Proxy.cs:1line 170

at Demo.PrinterPrxHelper.checkedCast (ObjectPrx b) in C:\cygwin)\
home\michi\src\ice\cs\demo\book\printer\generated\Prin
ter.cs:1line 140

at Client.Main(String[] args) in C:\cygwin\home\michi\src\ice\c
s\demo\book\printer\Client.cs:1line 23
Caused by: System.ComponentModel.Win32Exception: No connection cou
1d be made because the target machine actively refused

it

Note that, to successfully run client and server, the C# run time must be able to
locate the Tce.d11 library. (Under Windows, one way to ensure this is to copy

the library into the current directory. Please consult the documentation for your
C# run time to see how it locates libraries.)

Writing an Ice Application with Visual Basic

This section shows how to create an Ice application with Visual Basic.

Overview

As of version 3.3, Ice no longer includes a separate compiler to create Visual
Basic source code from Slice definitions. Instead, you need to use the Slice-to-C#
compiler slice2cs to create C# source code and compile the generated C#
source code with a C# compiler into a DLL that contains the compiled generated
code for your Slice definitions. Your Visual Basic application then links with this
DLL and the Ice-for-NET DLL (Ice.d11).

6. This approach works not only with Visual Basic, but with any language that targets the .NET run
time. However, ZeroC does not provide support for languages other than C# and Visual Basic.

A Hello World Application

Figure 3.1 illustrates this development process.

Slice .) Slice-to-C#) C#
Printer.ice > . > Printer.cs L .
Developer Compiler Compiler
_/\ _/—\
Y
Client Client .vb _ | Visual Basic - Client -
Developer ’ | Compiler " | Executable Stub &
N Skeleton
DLL
RPC
.NET Ice
) . Run-Time
Server Visual Basic Server
Server.vb - . - DLL
Developer Compiler Executable <
_/—\

Figure 3.1. Developing a Visual Basic application with Ice.

Compiling a Slice Definition for Visual Basic

The first step in creating our VB application is to compile our Slice definition to
generate proxies and skeletons. You can compile the definition as follows:

$ mkdir generated
$ slice2cs --output-dir generated Printer.ice

The - -output-dir option instructs the compiler to place the generated files
into the generated directory. This avoids cluttering the working directory with
the generated files. The s1lice2cs compiler produces a single source file,
Printer. cs, from this definition. The exact contents of this file do not concern
us for now—it contains the generated code that corresponds to the Printer inter-
face we defined in Printer.ice.

We now need to compile this generated code into a DLL:

$ csc /reference:Ice.dll /lib:%ICE_HOME%\bin /t:library
/out:Printer.dll generated\Printer.cs

This creates a DLL called Printer.d1l1 that contains the code we generated
from the Slice definitions.

3.6 Writing an Ice Application with Visual Basic 55

Writing and Compiling a Server

To implement our Printer interface, we must create a servant class. By conven-
tion, servant classes use the name of their interface with an I-suffix, so our servant
class is called PrinterI and placed into a source file Server. vb:

Imports System
Imports Demo

Public Class PrinterI
Inherits PrinterDisp

Public Overloads Overrides Sub printString(_
ByVal s As String,
ByVal current As Ice.Current)
Console.WritelLine (s)
End Sub

End Class

The PrinterT class inherits from a base class called PrinterDisp, which
is generated by the s1ice2cs compiler. The base class is abstract and contains a
printString method that accepts a string for the printer to print and a param-
eter of type Ice.Current. (For now we will ignore the Tce . Current param-
eter. We will see its purpose in detail in Section 32.6.) Our implementation of the
printString method simply writes its argument to the terminal.

The remainder of the server code follows in Server . vb and is shown in full
here:

Module Server

Public Sub Main(ByVal args() As String)

Dim status As Integer = 0
Dim ic As Ice.Communicator = Nothing
Try

ic = Ice.Util.initialize(args)

Dim adapter As Ice.ObjectAdapter = _
ic.createObjectAdapterWithEndpoints(_
"SimplePrinterAdapter", "default -p 10000")
Dim obj As Ice.Object = New PrinterI
adapter.add(obj, ic.stringToIdentity(_
"SimplePrinter"))
adapter.activate ()
ic.waitForShutdown ()

56

A Hello World Application

Catch e As Exception
Console.Error.WriteLine (e)
status =1

End Try

If Not ic Is Nothing Then
' Clean up
1
Try

ic.destroy ()

Catch e As Exception
Console.Error.WritelLine (e)
status =1

End Try

End If
Environment .Exit (status)
End Sub

End module
Note the general structure of the code:
Module Server
Public Sub Main(ByVal args() As String)

Dim status As Integer = 0

Dim ic As Ice.Communicator = Nothing

Try

' Server implementation here...

Catch e As Exception
Console.Error.WriteLine (e)

status = 1
End Try
If Not ic Is Nothing Then
' Clean up
1
Try

ic.destroy ()

Catch e As Exception
Console.Error.WritelLine (e)
status =1

End Try

End If

3.6 Writing an Ice Application with Visual Basic 57

Environment .Exit (status)
End Sub

End module

The body of Main contains a Try block in which we place all the server code,
followed by a Catch block. The catch block catches all exceptions that may be
thrown by the code; the intent is that, if the code encounters an unexpected run-
time exception anywhere, the stack is unwound all the way back to Main, which
prints the exception and then returns failure to the operating system.

Before the code exits, it destroys the communicator (if one was created
successfully). Doing this is essential in order to correctly finalize the Ice run time:
the program must call destroy on any communicator it has created; otherwise,
undefined behavior results.

The body of our Try block contains the actual server code:

ic = Ice.Util.initialize(args)
Dim adapter As Ice.ObjectAdapter = _
ic.createObjectAdapterWithEndpoints(_
"SimplePrinterAdapter", "default -p 10000")
Dim obj As Ice.Object = New PrinterI
adapter.add(obj, ic.stringToIdentity(
"SimplePrinter"))
adapter.activate()
ic.waitForShutdown ()

The code goes through the following steps:

1. We initialize the Ice run time by calling Ice.Util.initialize. (We
pass args to this call because the server may have command-line arguments
that are of interest to the run time; for this example, the server does not require
any command-line arguments.) The call to initialize returns an
Ice: :Communicator reference, which is the main handle to the Ice run time.

2. We create an object adapter by calling createObjectAdapterWith-
Endpoints on the Communicator instance. The arguments we pass are
"SimplePrinterAdapter (which is the name of the adapter) and
"default -p 10000, which instructs the adapter to listen for incoming
requests using the default protocol (TCP/IP) at port number 10000.

3. At this point, the server-side run time is initialized and we create a servant for
our Printer interface by instantiating a PrinterI object.

4. We inform the object adapter of the presence of a new servant by calling add
on the adapter; the arguments to add are the servant we have just instantiated,

58

A Hello World Application

plus an identifier. In this case, the string "SimplePrinter is the name of
the servant. (If we had multiple printers, each would have a different name or,
more correctly, a different object identity.)

5. Next, we activate the adapter by calling its act ivate method. (The adapter
is initially created in a holding state; this is useful if we have many servants
that share the same adapter and do not want requests to be processed until after
all the servants have been instantiated.)

6. Finally, we call waitForShutdown. This call suspends the calling thread
until the server implementation terminates, either by making a call to shut
down the run time, or in response to a signal. (For now, we will simply inter-
rupt the server on the command line when we no longer need it.)

Note that, even though there is quite a bit of code here, that code is essentially the
same for all servers. You can put that code into a helper class and, thereafter, will
not have to bother with it again. (Ice ships with such a helper class, called
Ice.Application—see Section 16.3.1.) As far as actual application code is
concerned, the server contains only a few lines: ten lines for the definition of the
PrinterT class, plus three” lines to instantiate a PrinterI object and register
it with the object adapter.

We can compile the server code as follows:

$ vbc /reference:Ice.dll /libpath:%ICE_HOME%\bin
/reference:Printer.dll /out:server.exe Server.vb

This compiles our application code and links it with the Ice-for-.NET run time and
the DLL we generated earlier. We assume that the ICE_HOME environment vari-
able is set to the top-level directory containing the Ice run time. (For example, if
you have installed Ice in C: \opt\Ice, set ICE_HOME to that path.)

Writing and Compiling a Client

The client code, in Client . vb, looks very similar to the server. Here it is in full:

Imports System
Imports Demo

Module Client

7. Well, two lines, really: printing space limitations force us to break source lines more often than
you would in your actual source files.

3.6 Writing an Ice Application with Visual Basic 59

Public Sub Main(ByVal args() As String)

Dim status As Integer = 0
Dim ic As Ice.Communicator = Nothing
Try

ic = Ice.Util.initialize(args)

Dim obj As Ice.ObjectPrx = ic.stringToProxy(_
"SimplePrinter:default -p 10000")
Dim printer As PrinterPrx = _
PrinterPrxHelper.checkedCast (obj)
If printer Is Nothing Then
Throw New ApplicationException ("Invalid proxy")
End If

printer.printString("Hello World!")
Catch e As Exception
Console.Error.WriteLine (e)

status = 1
End Try
If Not ic Is Nothing Then
' Clean up
1
Try

ic.destroy ()
Catch e As Exception
Console.Error.WritelLine (e)

status =1
End Try
End If
Environment .Exit (status)
End Sub
End Module

Note that the overall code layout is the same as for the server: we use the same
Try and Catch blocks to deal with errors. The code in the Try block does the
following:

1. As for the server, we initialize the Ice run time by calling
Ice.Util.initialize.

2. The next step is to obtain a proxy for the remote printer. We create a proxy by
calling stringToProxy on the communicator, with the string
"SimplePrinter:default -p 10000". Note that the string contains
the object identity and the port number that were used by the server. (Obvi-
ously, hard-coding object identities and port numbers into our applications is a

60

A Hello World Application

bad idea, but it will do for now; we will see more architecturally sound ways
of doing this in Chapter 38.)

3. The proxy returned by stringToProxy is of type Ice: :0bjectPrx, which is
at the root of the inheritance tree for interfaces and classes. But to actually talk
to our printer, we need a proxy for a Printer interface, not an Object inter-
face. To do this, we need to do a down-cast by calling PrinterPrx-
Helper.checkedCast. A checked cast sends a message to the server,
effectively asking “is this a proxy for a Printer interface?” If so, the call
returns a proxy of type Demo: : Printer; otherwise, if the proxy denotes an
interface of some other type, the call returns null.

4. We test that the down-cast succeeded and, if not, throw an error message that
terminates the client.

5. We now have a live proxy in our address space and can call the print-
String method, passing it the time-honored "Hello World! string. The
server prints that string on its terminal.

Compiling the client looks much the same as for the server:

$ vbe /reference:Ice.dll /libpath:%ICE_HOME%\bin
/reference:Printer.dll /out:client.exe Client.vb

Running Client and Server
To run client and server, we first start the server in a separate window:

S server.exe

At this point, we won’t see anything because the server simply waits for a client to
connect to it. We run the client in a different window:

S client.exe

$

The client runs and exits without producing any output; however, in the server
window, we see the "Hello World! " thatis produced by the printer. To get rid
of the server, we interrupt it on the command line for now. (We will see cleaner
ways to terminate a server in Chapter 16.)

If anything goes wrong, the client will print an error message. For example, if
we run the client without having first started the server, we get something like the
following:

3.7 Writing an Ice Application with Objective-C 61

3.7

Ice.ConnectionRefusedException
error = 0

at IcelInternal.ProxyFactory.checkRetryAfterException (LocalExcep
tion ex, Reference ref, Int32 cnt) in c:\cygwin\home\m
ichi\src\ice\cs\src\Ice\ProxyFactory.cs:line 167

at Ice.ObjectPrxHelperBase.handleException (ObjectDel delegat
e, LocalException ex, Int32 cnt) in c:\cygwin\home\mic
hil\src\ice\cs\src\Ice\Proxy.cs:1line 970

at Ice.ObjectPrxHelperBase.ice isA(String id , Dictionary~2 co
ntext , Boolean explicitContext) in c:\cygwin\home)\
michi\src\ice\cs\src\Ice\Proxy.cs:line 201

at Ice.ObjectPrxHelperBase.ice isA(String id) in c:\cygwin\ho

me\michi\src\ice\cs\src\Ice\Proxy.cs:1line 170

at Demo.PrinterPrxHelper.checkedCast (ObjectPrx b) in C:\cygwin)\
home\michi\src\ice\cs\demo\book\printer\generated\Prin
ter.cs:line 140

at Client.Main(String[] args) in C:\cygwin\home\michi\src\ice\c
s\demo\book\printer\Client.cs:1line 23
Caused by: System.ComponentModel.Win32Exception: No connection cou
1d be made because the target machine actively refused

it

Note that, to successfully run client and server, the VB run time must be able to

locate the Tce.d11 library. (Under Windows, one way to ensure this is to copy
the library into the current directory. Please consult the documentation for your

VB run time to see how it locates libraries.)

Writing an Ice Application with Objective-C

This section shows how to create an Ice application with Objective-C.

Compiling a Slice Definition for Objective-C

The first step in creating our Objective-C application is to compile our Slice defi-
nition to generate Objective-C proxies and skeletons. Under Unix, you can
compile the definition as follows:

$ slice2objc Printer.ice

The s1lice2objc compiler produces two Objective-C source files from this
definition, Printer.h and Printer.m.

62

A Hello World Application

® Printer.h

The Printer.h header file contains Objective-C type definitions that corre-
spond to the Slice definitions for our Printer interface. This header file must
be included in both the client and the server source code.

* Printer.m

The Printer.m file contains the source code for our Printer interface. The
generated source contains type-specific run-time support for both clients and
servers. For example, it contains code that marshals parameter data (the string
passed to the printString operation) on the client side and unmarshals that
data on the server side.

The Printer.m file must be compiled and linked into both client and server.

Writing and Compiling a Server
The source code for the server takes only a few lines and is shown in full here:

#import <Ice/Ice.h>
#import <Printer.h>

#import <Foundation/NSAutoreleasePool.h>
#import <stdio.h>

@interface PrinterI : DemoPrinter <DemoPrinter>
@end

@implementation PrinterI
- (void) printString: (NSMutableString *)s
current: (ICECurrent *)current

printf ("$s\n", [s UTF8String]);
@end
int
main (int argc, char* argv[])
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
int status = 1;
id<ICECommunicator> communicator = nil;
etry
communicator =

[ICEUtil createCommunicator:&argc argv:argv];

3.7 Writing an Ice Application with Objective-C 63

1d<ICEObjectAdapter> adapter =
[communicator createObjectAdapterWithEndpoints:
@"SimplePrinterAdapter"
endpoints:@"default -p 10000"];

ICEObject *object = [[[PrinterI alloc] init] autorelease];
[adapter add:object identity: [communicator

stringToIdentity:@"SimplePrinter"]];
[adapter activate];

[communicator waitForShutdown] ;

status = 0;

} @catch (NSException* ex) {
NSLog (@"%@", ex) ;

}

etry
[communicator destroyl] ;
} @catch (NSException* ex) {
NSLog (@"%@", ex) ;
}

[pool releasel;
return status;

There appears to be a lot of code here for something as simple as a server that just
prints a string. Do not be concerned by this: most of the preceding code is boiler
plate that never changes. For this very simple server, the code is dominated by this
boiler plate.

Every Ice source file starts with an include directive for Ice . h, which
contains the definitions for the Ice run time. We also include Printexr.h, which
was generated by the Slice compiler and contains the Objective-C definitions for
our printer interface. We also import headers to allow us to use an autorelease pool
and to produce output:

#import <Ice/Ice.h>
#import <Printer.h>

#import <Foundation/NSAutoreleasePool.h>
#import <stdio.hs

64

A Hello World Application

Our server implements a single printer servant, of type PrinterI. Looking at
the generated code in Printer.h, we find the following (tidied up a little to get
rid of irrelevant detail):

@protocol DemoPrinter <ICEObjects
- (void) printString: (NSMutableString *)s

current: (ICECurrent *)current;
@end

@interface DemoPrinter : ICEObject

/7

@end

The DemoPrinter protocol and class definitions are generated by the Slice
compiler. The protocol defines the print St ring method, which we must
implement in our servant. The DemoPrinter class contains methods that are
internal to the mapping, so we are not concerned with these. However, our servant
must derive from this skeleton class:

@interface PrinterI : DemoPrinter <DemoPrinter>
@end

@implementation PrinterI
- (void) printString: (NSMutableString *)s
current: (ICECurrent *)current

}

@end

printf ("$s\n", [s UTF8Stringl) ;

As you can see, the implementation of the print String method is trivial: it
simply writes its string argument to stdout.

Note that print St ring has a second parameter of type ICECurrent. The
Ice run time passes additional information about an incoming request to the
servant in this parameter. For now, we will ignore it. (See Section 32.6 for more
information about this parameter.)

What follows is the server main program. Note the general structure of the
code:
int
main (int argc, char* argv[])

{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

int status = 1;

3.7 Writing an Ice Application with Objective-C 65

id<ICECommunicator> communicator = nil;
etry
communicator =
[ICEUtil createCommunicator:&argc argv:argv];

// Server implementation here...

status = 0;

} @catch (NSException* ex) {
NSLog (@"%@", ex);

1

etry
[communicator destroyl] ;
} @catch (NSException* ex) {
NSLog (@"%@", ex) ;
1

[pool releasel];
return status;

}

The body of main instantiates an autorelease pool, which it releases before
returning to ensure that the program does not leak memory. main contains the
declaration of two variables, status and communicator. The status vari-
able contains the exit status of the program and the communicator variable, of
type 1d<ICECommunicators, contains the main handle to the Ice run time.

Following these declarations is a try block in which we place all the server
code, followed by a catch handler that logs any unhandled exceptions.

Before returning, main executes a bit of cleanup code that calls the destroy
method on the communicator. The cleanup call is outside the first t ry block for a
reason: we must ensure that the Ice run time is finalized whether the code termi-
nates normally or terminates due to an exception.8

The body of the first try block contains the actual server code:

communicator =
[ICEUtil createCommunicator:&argc argv:argv] ;

1d<ICEObjectAdapter> adapter =

8. Failure to call destroy on the communicator before the program exits results in undefined
behavior.

66

A Hello World Application

[communicator createObjectAdapterWithEndpoints:
@"SimplePrinterAdapter"
endpoints:@"default -p 10000"];

ICEObject *object = [[[PrinterI alloc] init] autorelease];
[adapter add:object identity: [communicator

stringToIdentity:@"SimplePrinter"]];
[adapter activatel];

[communicator waitForShutdown] ;

The code goes through the following steps:

1.

We initialize the Ice run time by calling createCommunicator. (We pass
argc and argv to this call because the server may have command-line argu-
ments that are of interest to the run time; for this example, the server does not
require any command-line arguments.) The call to createCommunicator
returns a pointer to an Ice: : Communicator object, which is the main handle
to the Ice run time.

. We create an object adapter by calling createObjectAdapterWith-

Endpoints on the Communicator instance. The arguments we pass are
"SimplePrinterAdapter" (which is the name of the adapter) and
"default -p 10000", which instructs the adapter to listen for incoming
requests using the default protocol (TCP/IP) at port number 10000.

. At this point, the server-side run time is initialized and we create a servant for

our Printer interface by instantiating a PrinterI object.

. We inform the object adapter of the presence of a new servant by calling add

on the adapter; the arguments to add are the servant we have just instantiated,
plus an identifier. In this case, the string "SimplePrinter is the name of
the servant. (If we had multiple printers, each would have a different name or,
more correctly, a different object identity.)

. Next, we activate the adapter by calling its act ivate method. (The adapter

is initially created in a holding state; this is useful if we have many servants
that share the same adapter and do not want requests to be processed until after
all the servants have been instantiated.) The server starts to process incoming
requests from clients as soon as the adapter is activated.

. Finally, we call waitForShutdown. This call suspends the calling thread

until the server implementation terminates, either by making a call to shut
down the run time, or in response to a signal. (For now, we will simply inter-
rupt the server on the command line when we no longer need it.)

3.7 Writing an Ice Application with Objective-C 67

Note that, even though there is quite a bit of code here, that code is essentially the
same for all servers. You can put that code into a helper class and, thereafter, will
not have to bother with it again. As far as actual application code is concerned, the
server contains only a few lines: nine lines for the definition of the PrinterI
class, plus three” lines to instantiate a PrinterT object and register it with the
object adapter.

Assuming that we have the server code in a file called Server .m, we can
compile it as follows:

$ cc -c -I. -I$ICE HOME/include Printer.m Server.m

This compiles both our application code and the code that was generated by the
Slice compiler. We assume that the ICE_HOME environment variable is set to the
top-level directory containing the Ice run time. (For example, if you have installed
Icein /opt/Ice, set ICE_HOME to that path.) Depending on your platform, you
may have to add additional include directives or other options to the compiler;
please see the demo programs that ship with Ice for the details.

Finally, we need to link the server into an executable:

S c++ Printer.o Server.o -o server \
-L$ICE HOME/lib -1IceObjC -framework Foundation

Again, depending on the platform, the actual list of libraries you need to link
against may be longer. The demo programs that ship with Ice contain all the detail.

Writing and Compiling a Client
The client code looks very similar to the server. Here it is in full:

#import <Ice/Ice.h>
#import <Printer.hs>

#import <Foundation/NSAutoreleasePool.h>
#import <stdio.h>

int
main (int argc, char* argv[])
{
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

9. Well, fewer lines, really: printing space limitations force us to break source lines more often than
you would in your actual source files.

68

A Hello World Application

}

int status = 1;
id<ICECommunicator> communicator = nil;
etry
communicator =
[ICEUtil createCommunicator:&argc argv:argv] ;
1d<ICEObjectPrx> base = [communicator
stringToProxy:@"SimplePrinter:default -p 10000"];
id<DemoPrinterPrx> printer =
[DemoPrinterPrx checkedCast:base];
if (!printer)
[NSException raise:@"Invalid proxy" format:nil];

[printer printString:@"Hello World!"];

status = 0;
} @catch (NSException* ex) {
NSLog (@"%@", ex) ;

etry
[communicator destroyl] ;
} @catch (NSException* ex) {
NSLog (@"%@", ex) ;
!

[pool releasel;
return status;

Note that the overall code layout is the same as for the server: we include the
headers for the Ice run time and the header generated by the Slice compiler, and
we use the same try block and catch handlers to deal with errors.

The code in the try block does the following:

. As for the server, we initialize the Ice run time by calling createCommuni -

cator.

. The next step is to obtain a proxy for the remote printer. We create a proxy by

calling stringToProxy on the communicator, with the string
"SimplePrinter:default -p 10000". Note that the string contains
the object identity and the port number that were used by the server. (Obvi-
ously, hard-coding object identities and port numbers into our applications is a
bad idea, but it will do for now; we will see more architecturally sound ways
of doing this in Chapter 38.)

3.7 Writing an Ice Application with Objective-C 69

3. The proxy returned by stringToProxy is of type 1d<ICEObjectPrx>,
which is at the root of the inheritance tree for interfaces and classes. But to
actually talk to our printer, we need a proxy for a Printer interface, not an
Object interface. To do this, we need to do a down-cast by calling the
checkedCast class method on the DemoPrinterPrx class. A checked
cast sends a message to the server, effectively asking “is this a proxy for a
Printer interface?” If so, the call returns a proxy to a Printer; otherwise, if
the proxy denotes an interface of some other type, the call returns a null proxy.

4. We test that the down-cast succeeded and, if not, throw an error message that
terminates the client.

5. We now have a live proxy in our address space and can call the print-
String method, passing it the time-honored "Hello World!" string. The
server prints that string on its terminal.

Compiling and linking the client looks much the same as for the server:
$ cc -c -I. -I$ICE HOME/include Printer.m Client.m

$ c++ Printer.o Client.o -o client \

-L$ICE HOME/lib -1IceObjC -framework Foundation

Running Client and Server

To run client and server, we first start the server in a separate window:

$./server

At this point, we won’t see anything because the server simply waits for a client to
connect to it. We run the client in a different window:

$./client
$

The client runs and exits without producing any output; however, in the server
window, we see the "Hello World! thatis produced by the printer. To get rid
of the server, we interrupt it on the command line for now.

If anything goes wrong, the client will print an error message. For example, if
we run the client without having first started the server, we get:

Network.cpp:1218: Ice::ConnectionRefusedException:
connection refused: Connection refused

Note that, to successfully run client and server, you may have to set
DYLD LIBRARY PATH to include the Ice library directory. Please see the instal-
lation instructions and the demo applications that ship with Ice Touch for details.

70

A Hello World Application

3.8 Writing an Ice Application with Python

This section shows how to create an Ice application with Python.

Compiling a Slice Definition for Python

The first step in creating our Python application is to compile our Slice definition
to generate Python proxies and skeletons. You can compile the definition as
follows: 1°

$ slice2py Printer.ice

The s1ice2py compiler produces a single source file, Printer ice.py,
from this definition. The compiler also creates a Python package for the Demo
module, resulting in a subdirectory named Demo. The exact contents of the source
file do not concern us for now—it contains the generated code that corresponds to
the Printer interface we defined in Printer. ice.

Writing a Server

To implement our Printer interface, we must create a servant class. By conven-
tion, servant classes use the name of their interface with an I-suffix, so our servant
class is called PrinterI:

class PrinterI (Demo.Printer) :
def printString(self, s, current=None) :
print s

The PrinterT class inherits from a base class called Demo . Printer, which
is generated by the s1ice2py compiler. The base class is abstract and contains a
printString method that accepts a string for the printer to print and a param-
eter of type Ice.Current. (For now we will ignore the Ice.Current param-
eter. We will see its purpose in detail in Section 32.6.) Our implementation of the
printString method simply writes its argument to the terminal.

The remainder of the server code, in Server . py, follows our servant class
and is shown in full here:

10.Whenever we show Unix commands in this book, we assume a Bourne or Bash shell. The
commands for Windows are essentially identical and therefore not shown.

3.8 Writing an Ice Application with Python 71

import sys, traceback, Ice
import Demo

class PrinterI (Demo.Printer) :
def printString(self, s, current=None):

print s
status = 0
ic = None
try:
ic = Ice.initialize(sys.argv)
adapter = ic.createObjectAdapterWithEndpoints (
"SimplePrinterAdapter", "default -p 10000")
object = PrinterI()

adapter.add(object, ic.stringToIldentity("SimplePrinter"))
adapter.activate ()
ic.waitForShutdown ()
except:
traceback.print exc()
status = 1

if ic:
Clean up
try:
ic.destroy ()
except:
traceback.print exc()
status = 1

sys.exit (status)
Note the general structure of the code:
status = 0
ic = None
try:
Server implementation here...
except:
traceback.print exc()
status = 1
if dic:

Clean up
try:

72

A Hello World Application

ic.destroy ()

except:
traceback.print exc()
status = 1

sys.exit (status)

The body of the main program contains a try block in which we place all the
server code, followed by an except block. The except block catches all
exceptions that may be thrown by the code; the intent is that, if the code encoun-
ters an unexpected run-time exception anywhere, the stack is unwound all the way
back to the main program, which prints the exception and then returns failure to
the operating system.

Before the code exits, it destroys the communicator (if one was created
successfully). Doing this is essential in order to correctly finalize the Ice run time:
the program must call destroy on any communicator it has created; otherwise,
undefined behavior results.

The body of our try block contains the actual server code:

ic = Ice.initialize(sys.argv)

adapter = ic.createObjectAdapterWithEndpoints (
"SimplePrinterAdapter", "default -p 10000")

object = PrinterI()

adapter.add(object, ic.stringToldentity ("SimplePrinter"))
adapter.activate ()
ic.waitForShutdown ()

The code goes through the following steps:

1. We initialize the Ice run time by calling Ice.initialize. (We pass
sys.argv to this call because the server may have command-line arguments
that are of interest to the run time; for this example, the server does not require
any command-line arguments.) The call to initialize returns an
Ice::Communicator reference, which is the main handle to the Ice run time.

2. We create an object adapter by calling createObjectAdapterWith-
Endpoints on the Communicator instance. The arguments we pass are
"SimplePrinterAdapter (which is the name of the adapter) and
"default -p 10000", which instructs the adapter to listen for incoming
requests using the default protocol (TCP/IP) at port number 10000.

3. At this point, the server-side run time is initialized and we create a servant for
our Printer interface by instantiating a PrinterI object.

3.8 Writing an Ice Application with Python 73

4.

We inform the object adapter of the presence of a new servant by calling add
on the adapter; the arguments to add are the servant we have just instantiated,
plus an identifier. In this case, the string "SimplePrinter is the name of
the servant. (If we had multiple printers, each would have a different name or,
more correctly, a different object identity.)

. Next, we activate the adapter by calling its activate method. (The adapter

is initially created in a holding state; this is useful if we have many servants
that share the same adapter and do not want requests to be processed until after
all the servants have been instantiated.)

. Finally, we call waitForShutdown. This call suspends the calling thread

until the server implementation terminates, either by making a call to shut
down the run time, or in response to a signal. (For now, we will simply inter-
rupt the server on the command line when we no longer need it.)

Note that, even though there is quite a bit of code here, that code is essentially the
same for all servers. You can put that code into a helper class and, thereafter, will

not

have to bother with it again. (Ice ships with such a helper class, called

Ice.Application—see Section 24.3.1.) As far as actual application code is
concerned, the server contains only a few lines: three lines for the definition of the
PrinterT class, plus two lines to instantiate a PrintexrI object and register it
with the object adapter.

Writing a Client

The client code, in Client . py, looks very similar to the server. Here it is in full:

import sys, traceback, Ice
import Demo

status = 0
ic = None
try:
ic = Ice.initialize(sys.argv)
base = ic.stringToProxy ("SimplePrinter:default -p 10000")
printer = Demo.PrinterPrx.checkedCast (base)
if not printer:
raise RuntimeError ("Invalid proxy")
printer.printString("Hello World!")
except:

traceback.print exc()
status =1

74

A Hello World Application

if dic:
Clean up
try:
ic.destroy()
except:
traceback.print exc()
status =1

sys.exit (status)

Note that the overall code layout is the same as for the server: we use the same
try and except blocks to deal with errors. The code in the try block does the
following:

1. As for the server, we initialize the Ice run time by calling
Ice.initialize.

2. The next step is to obtain a proxy for the remote printer. We create a proxy by
calling stringToProxy on the communicator, with the string
"SimplePrinter:default -p 10000". Note that the string contains
the object identity and the port number that were used by the server. (Obvi-
ously, hard-coding object identities and port numbers into our applications is a
bad idea, but it will do for now; we will see more architecturally sound ways
of doing this in Chapter 38.)

3. The proxy returned by stringToProxy is of type Ice: :0bjectPrx, which is
at the root of the inheritance tree for interfaces and classes. But to actually talk
to our printer, we need a proxy for a Demo: :Printer interface, not an Object
interface. To do this, we need to do a down-cast by calling Demo . Print -
erPrx.checkedCast. A checked cast sends a message to the server, effec-
tively asking “is this a proxy for a Demo: : Printer interface?” If so, the call
returns a proxy of type Demo . PrinterPrx; otherwise, if the proxy denotes
an interface of some other type, the call returns None.

4. We test that the down-cast succeeded and, if not, throw an error message that
terminates the client.

5. We now have a live proxy in our address space and can call the print-
String method, passing it the time-honored "Hello World!" string. The
server prints that string on its terminal.

Running Client and Server
To run client and server, we first start the server in a separate window:

$ python Server.py

3.9 Writing an Ice Application with Ruby 75

3.9

At this point, we won’t see anything because the server simply waits for a client to
connect to it. We run the client in a different window:

$ python Client.py
$

The client runs and exits without producing any output; however, in the server
window, we see the "Hello World! " thatis produced by the printer. To get rid
of the server, we interrupt it on the command line for now. (We will see cleaner
ways to terminate a server in Chapter 24.)

If anything goes wrong, the client will print an error message. For example, if
we run the client without having first started the server, we get something like the
following:

Traceback (most recent call last):
File "Client.py", line 10, in ?
printer = Demo.PrinterPrx.checkedCast (base)
File "Printer ice.py", line 43, in checkedCast
return Demo.PrinterPrx.ice checkedCast (proxy, '::Demo::Printer
', facet)
ConnectionRefusedException: Ice.ConnectionRefusedException:
Connection refused

Note that, to successfully run the client and server, the Python interpreter must be
able to locate the Ice extension for Python. See the Ice for Python installation
instructions for more information.

Writing an Ice Application with Ruby

This section shows how to create an Ice client application with Ruby.

Compiling a Slice Definition for Ruby

The first step in creating our Ruby application is to compile our Slice definition to
generate Ruby proxies. You can compile the definition as follows: 1

S slice2rb Printer.ice

11.Whenever we show Unix commands in this book, we assume a Bourne or Bash shell. The
commands for Windows are essentially identical and therefore not shown.

76

A Hello World Application

The slice2rb compiler produces a single source file, Printer. rb, from this
definition. The exact contents of the source file do not concern us for now—it
contains the generated code that corresponds to the Printer interface we defined
in Printer.ice.

Writing a Client
The client code, in Client . rb, is shown below in full:

require 'Printer.rb'

status = 0
ic = nil
begin
ic = Ice::initialize (ARGV)
base = ic.stringToProxy ("SimplePrinter:default -p 10000")
printer = Demo: :PrinterPrx: :checkedCast (base)
if not printer
raise "Invalid proxy"
end

printer.printString("Hello World!™")

rescue
puts $!
puts $!.backtrace.join("\n")
status = 1
end
if ic
Clean up
begin
ic.destroy ()
rescue
puts $!
puts $!.backtrace.join("\n")
status = 1
end
end

exit (status)

The program begins with a require statement, which loads the Ruby code we
generated from our Slice definition in the previous section. It is not necessary for
the client to explicitly load the Ice module because Printer . rb already does
that.

3.9 Writing an Ice Application with Ruby 77

The body of the main program contains a begin block in which we place all
the client code, followed by a rescue block. The rescue block catches all
exceptions that may be thrown by the code; the intent is that, if the code encoun-
ters an unexpected run-time exception anywhere, the stack is unwound all the way
back to the main program, which prints the exception and then returns failure to
the operating system.

The body of our begin block goes through the following steps:

1. We initialize the Ice run time by calling Ice::initialize. (We pass
ARGV to this call because the client may have command-line arguments that
are of interest to the run time; for this example, the client does not require any
command-line arguments.) The call to initialize returns an Ice: :Commu-
nicator reference, which is the main handle to the Ice run time.

2. The next step is to obtain a proxy for the remote printer. We create a proxy by
calling stringToProxy on the communicator, with the string
"SimplePrinter:default -p 10000". Note that the string contains
the object identity and the port number that were used by the server. (Obvi-
ously, hard-coding object identities and port numbers into our applications is a
bad idea, but it will do for now; we will see more architecturally sound ways
of doing this in Chapter 38.)

3. The proxy returned by stringToProxy is of type Ice::0bjectPrx, which is
at the root of the inheritance tree for interfaces and classes. But to actually talk
to our printer, we need a proxy for a Demo: :Printer interface, not an Object
interface. To do this, we need to do a down-cast by calling Demo: : Print -
erPrx: :checkedCast. A checked cast sends a message to the server,
effectively asking “is this a proxy for a Demo: : Printer interface?” If so, the
call returns a proxy of type Demo : : PrinterPrx; otherwise, if the proxy
denotes an interface of some other type, the call returns nil.

4. We test that the down-cast succeeded and, if not, throw an error message that
terminates the client.

5. We now have a live proxy in our address space and can call the print-
String method, passing it the time-honored "Hello World!" string. The
server prints that string on its terminal.

Before the code exits, it destroys the communicator (if one was created success-
fully). Doing this is essential in order to correctly finalize the Ice run time: the
program must call destroy on any communicator it has created; otherwise,
undefined behavior results.

78 A Hello World Application
Running the Client
The server must be started before the client. Since Ice for Ruby does not support
server-side behavior, we need to use a server from another language mapping. In
this case, we will use the C++ server (see Chapter 9):
S server
At this point, we won’t see anything because the server simply waits for a client to
connect to it. We run the client in a different window:
$ ruby Client.rb
$
The client runs and exits without producing any output; however, in the server
window, we see the "Hello World! " thatis produced by the printer. To get rid
of the server, we interrupt it on the command line for now. (We will see cleaner
ways to terminate a server in Chapter 24.)

If anything goes wrong, the client will print an error message. For example, if
we run the client without having first started the server, we get something like the
following:
exception ::Ice::ConnectionRefusedException
{

error = 111
}
Note that, to successfully run the client, the Ruby interpreter must be able to
locate the Ice extension for Ruby. See the Ice for Ruby installation instructions for
more information.
3.10 Writing an Ice Application with PHP

This section shows how to create an Ice client application with PHP.

Compiling a Slice Definition for PHP

The first step in creating our PHP application is to compile our Slice definition to
generate PHP code. You can compile the definition as follows: 12

12.Whenever we show Unix commands in this book, we assume a Bourne or Bash shell. The
commands for Windows are essentially identical and therefore not shown.

3.10 Writing an Ice Application with PHP 79

$ slice2php Printer.ice

The s1lice2php compiler produces a single source file, Printer . php, from
this definition. The exact contents of the source file do not concern us for now—it
contains the generated code that corresponds to the Printer interface we defined
in Printer.ice.

Writing a Client
The client code, in Client . php, is shown below in full:

<?php
require 'Ice.php';
require 'Printer.php';

Sic = null;
try
{
$ic = Ice initialize();
Sbase = $ic->stringToProxy ("SimplePrinter:default -p 10000") ;
$printer = Demo_ PrinterPrxHelper::checkedCast ($base) ;
if (!$printer)
throw new RuntimeException("Invalid proxy") ;

Sprinter->printString("Hello World!") ;

}
catch (Exception S$Sex)
{
echo Sex;
}
if ($ic)
{
// Clean up
try
{
Sic->destroy () ;
1
catch (Exception $ex)
{
echo Sex;
}
!

80

A Hello World Application

The program begins with require statements to load the Ice run-time defini-
tions (Ice.php) and the code we generated from our Slice definition in the
previous section (Printer.php).

The body of the main program contains a t ry block in which we place all the
client code, followed by a catch block. The catch block catches all exceptions
that may be thrown by the code; the intent is that, if the code encounters an unex-
pected run-time exception anywhere, the stack is unwound all the way back to the
main program, which prints the exception and then returns failure to the operating
system.

The body of our try block goes through the following steps:

1. We initialize the Ice run time by calling Ice _initialize. The call to
initialize returns an Ice::Communicator reference, which is the main
handle to the Ice run time.

2. The next step is to obtain a proxy for the remote printer. We create a proxy by
calling stringToProxy on the communicator, with the string
"SimplePrinter:default -p 10000". Note that the string contains
the object identity and the port number that were used by the server. (Obvi-
ously, hard-coding object identities and port numbers into our applications is a
bad idea, but it will do for now; we will see more architecturally sound ways
of doing this in Chapter 38.)

3. The proxy returned by stringToProxy is of type Ice::0bjectPrx, which is
at the root of the inheritance tree for interfaces and classes. But to actually talk
to our printer, we need a proxy for a Demo: : Printer interface, not an Object
interface. To do this, we need to do a down-cast by calling
Demo_ PrinterPrxHelper::checkedCast. A checked cast sends a
message to the server, effectively asking “is this a proxy for a Demo: :Printer
interface?” If so, the call returns a proxy narrowed to the Printer interface;
otherwise, if the proxy denotes an interface of some other type, the call returns
null.

4. We test that the down-cast succeeded and, if not, throw an exception that
terminates the client.

5. We now have a live proxy in our address space and can call the print-
String method, passing it the time-honored "Hello World!r string. The
server prints that string on its terminal.

Before the code exits, it destroys the communicator (if one was created success-
fully). Doing this is essential in order to correctly finalize the Ice run time. If a
script neglects to destroy the communicator, Ice destroys it automatically.

3.11 Summary 81

3.1

Running the Client

The server must be started before the client. Since Ice for PHP does not support
server-side behavior, we need to use a server from another language mapping. In
this case, we will use the C++ server (see Chapter 9):

S server

At this point, we won’t see anything because the server simply waits for a client to
connect to it. We run the client in a different window using PHP’s command-line
interpreter:

$ php -f Client.php
$

The client runs and exits without producing any output; however, in the server
window, we see the "Hello World! " thatis produced by the printer. To get rid
of the server, we interrupt it on the command line for now. (We will see cleaner
ways to terminate a server in Chapter 24.)

If anything goes wrong, the client will print an error message. For example, if
we run the client without having first started the server, we get something like the
following:

exception ::Ice::ConnectionRefusedException

{
}

Note that, to successfully run the client, the PHP interpreter must be able to locate
the Ice extension for PHP. See the Ice for PHP installation instructions for more
information.

error = 111

Summary

This chapter presented a very simple (but complete) client and server. As we saw,
writing an Ice application involves the following steps:

1. Write a Slice definition and compile it.
2. Write a server and compile it.
3. Write a client and compile it.

If someone else has written the server already and you are only writing a client,
you do not need to write the Slice definition, only compile it (and, obviously, you
do not need to write the server in that case).

82

A Hello World Application

Do not be concerned if, at this point, much appears unclear. The intent of this
chapter is to give you an idea of the development process, not to explain the Ice
APIs in intricate detail. We will cover all the detail throughout the remainder of
this book.

Part 11

Slice

Chapter 4
The Slice Language

4.1

Chapter Overview

4.2

In this chapter we present the Slice language. We start by discussing the role and
purpose of Slice, explaining how language-independent specifications are
compiled for particular implementation languages to create actual implementa-
tions. Sections 4.10 and 4.11 cover the core Slice concepts of interfaces, opera-
tions, exceptions, and inheritance. These concepts have profound influence on the
behavior of a distributed system and should be read in detail.

This chapter also presents s1ice2docbook, which you can use to automate
generation of documentation for Slice definitions.

Introduction

Slice! (Specification Language for Ice) is the fundamental abstraction mechanism
for separating object interfaces from their implementations. Slice establishes a
contract between client and server that describes the types and object interfaces
used by an application. This description is independent of the implementation

1. Even though Slice is an acronym, it is pronounced as single syllable, like a slice of bread.

85

86

The Slice Language

4.3

language, so it does not matter whether the client is written in the same language
as the server.

Slice definitions are compiled for a particular implementation language by a
compiler. The compiler translates the language-independent definitions into
language-specific type definitions and APIs. These types and APIs are used by the
developer to provide application functionality and to interact with Ice. The trans-
lation algorithms for various implementation languages are known as language
mappings. Currently, Ice defines language mappings for C++, Java, C#, Python,
Objective-C, Ruby, and PHP.

Because Slice describes interfaces and types (but not implementations), it is a
purely declarative language; there is no way to write executable statements in
Slice.

Slice definitions focus on object interfaces, the operations supported by those
interfaces, and exceptions that may be raised by operations. In addition, Slice
offers features for object persistence (see Chapter 39). This requires quite a bit of
supporting machinery; in particular, quite a bit of Slice is concerned with the defi-
nition of data types. This is because data can be exchanged between client and
server only if their types are defined in Slice. You cannot exchange arbitrary C++
data between client and server because it would destroy the language indepen-
dence of Ice. However, you can always create a Slice type definition that corre-
sponds to the C++ data you want to send, and then you can transmit the Slice type.

We present the full syntax and semantics of Slice here. Because much of Slice
is based on C++ and Java, we focus on those areas where Slice differs from C++
or Java or constrains the equivalent C++ or Java feature in some way. Slice
features that are identical to C++ and Java are mentioned mostly by example.

Compilation

A Slice compiler produces source files that must be combined with application
code to produce client and server executables.

The outcome of the development process is a client executable and a server
executable. These executables can be deployed anywhere, whether the target envi-
ronments use the same or different operating systems and whether the executables
are implemented using the same or different languages. The only constraint is that
the host machines must provide the necessary run-time environment, such as any
required dynamic libraries, and that connectivity can be established between
them.

4.3 Compilation 87

4.3.1

Single Development Environment for Client and Server

Figure 4.1 shows the situation when both client and server are developed in C++.
The Slice compiler generates two files from a Slice definition in a source file
Printer.ice: aheader file (Printer.h) and a source file (Printer. cpp).

Slice)) Slice-to-C++ Server
Printer.ice L .
Developer Compiler Developer
m
(P h L

NS

) C++ Ice
Client > Client.cpp Run-Time
Developer Library
- X
Yy

Client RPC Server
Executable [~ "™ Executable

-
-

Figure 4.1. Development process if client and server share the same development environment.

® The Printer.h header file contains definitions that correspond to the types
used in the Slice definition. It is included in the source code of both client and
server to ensure that client and server agree about the types and interfaces used
by the application.

® The Printer. cpp source file provides an API to the client for sending
messages to remote objects. The client source code (Client . cpp, written
by the client developer) contains the client-side application logic. The gener-
ated source code and the client code are compiled and linked into the client
executable.

The Printer. cpp source file also contains source code that provides an up-
call interface from the Ice run time into the server code written by the devel-
oper and provides the connection between the networking layer of Ice and the

88

The Slice Language

4.3.2

application code. The server implementation file (Server . cpp, written by
the server developer) contains the server-side application logic (the object
implementations, properly termed servants). The generated source code and
the implementation source code are compiled and linked into the server
executable.

Both client and server also link with an Ice library that provides the necessary run-
time support.

You are not limited to a single implementation of a client or server. For
example, you can build multiple servers, each of which implements the same
interfaces but uses different implementations (for example, with different perfor-
mance characteristics). Multiple such server implementations can coexist in the
same system. This arrangement provides one fundamental scalability mechanism
in Ice: if you find that a server process starts to bog down as the number of objects
increases, you can run an additional server for the same interfaces on a different
machine. Such federated servers provide a single logical service that is distributed
over a number of processes on different machines. Each server in the federation
implements the same interfaces but hosts different object instances. (Of course,
federated servers must somehow ensure consistency of any databases they share
across the federation.)

Ice also provides support for replicated servers. Replication permits multiple
servers to each implement the same set of object instances. This improves perfor-
mance and scalability (because client load can be shared over a number of servers)
as well as redundancy (because each object is implemented in more than one
server).

Different Development Environments for Client and Server

Client and server cannot share any source or binary components if they are devel-
oped in different languages. For example, a client written in Java cannot include a
C++ header file.

Figure 4.2 shows the situation when a client written in Java and the corre-
sponding server is written in C++. In this case, the client and server developers are
completely independent, and each uses his or her own development environment

4.4 Source Files 89

and language mapping. The only link between client and server developers is the
Slice definition each one uses.

Java C++
I
I
Client Slice-to-Java [Slice-to-C++ Server
Developer Compiler I Compiler Developer
I
' T~
Y Y ! Y a]
Client.java * . java : Printer.h Printer.cpp Eeicil
N !
I
I
I
Y : Y
ava Ice
Jav : Client RPC Server C++ I.ce
Run-Time > E tabl | E tabl -t Run-Time
Library xecutable | xecutable Library
I

Figure 4.2. Development process for different development environments.

For Java, the slice compiler creates a number of files whose names depend on
the names of various Slice constructs. (These files are collectively referred to as
* . java in Figure 4.2.)

4.4 Source Files

Slice defines a number of rules for the naming and contents of Slice source files.

90

The Slice Language

4.41

4.4.2

443

File Naming

Files containing Slice definitions must end in a . ice file extension, for example,
Clock. ice is a valid file name. Other file extensions are rejected by the
compilers.

For case-insensitive file systems (such as DOS), the file extension may be
written as uppercase or lowercase, so Clock . ICE is legal. For case-sensitive file
systems (such as Unix), Clock . ICE is illegal. (The extension must be in lower-
case.)

File Format

Slice is a free-form language so you can use spaces, horizontal and vertical tab
stops, form feeds, and newline characters to lay out your code in any way you
wish. (White space characters are token separators). Slice does not attach seman-
tics to the layout of a definition. You may wish to follow the style we have used
for the Slice examples throughout this book.

Slice files can be ASCII text files or use the UTF-8 character encoding with a
byte order marker (BOM) at the beginning of each file. However, Slice identifiers
are limited to ASCII letters and digits; non-ASCII letters can appear only in
comments.

Preprocessing

Slice is preprocessed by the C++ preprocessor, so you can use the usual prepro-
cessor directives, such as #include and macro definitions. However, Slice permits
#incTlude directives only at the beginning of a file, before any Slice definitions.

If you use #include directives, it is a good idea to protect them with guards to
prevent double inclusion of a file:

// File Clock.ice
#ifndef _CLOCK_ICE
#define _CLOCK_ICE

// #include directives here...
// Definitions here...

#endif _CLOCK_ICE

#include directives permit a Slice definition to use types defined in a different
source file. The Slice compilers parse all of the code in a source file, including the

4.5 Lexical Rules 91

4.4.4

4.5

code in #included files. However, the compilers generate code only for the top-
level file(s) nominated on the command line. You must separately compile
#included files to obtain generated code for all the files that make up your Slice
definition.

Note that you should avoid #include with double quotes:
#include "Clock.ice" // Not recommended!
While double quotes will work, the directory in which the preprocessor tries to
locate the file can vary depending on the operating system, so the included file
may not always be found where you expect it. Instead, use angle brackets (<>);
you can control which directories are searched for the file with the - I option of
the Slice compiler (see page 169).

Also note that, if you include a path separator in a #include directive, you
must use a forward slash:

#include <ST1iceDefs/Clock.ice> // OK

You cannot use a backslash in #incTlude directives:

#include <STiceDefs\Clock.ice> // ITllegal

Definition Order

Slice constructs, such as modules, interfaces, or type definitions, can appear in any
order you prefer. However, identifiers must be declared before they can be used.

Lexical Rules

4.5.1

Slice’s lexical rules are very similar to those of C++ and Java, except for some
differences for identifiers.

Comments
Slice definitions permit both the C and the C++ style of writing comments:

VES
% C-style comment.

:':/

// C++-style comment extending to the end of this Tine.

92

The Slice Language

4.5.2

4.5.3

Keywords

Slice uses a number of keywords, which must be spelled in lowercase. For
example, class and dictionary are keywords and must be spelled as shown.
There are two exceptions to this lowercase rule: Object and LocalObject are
keywords and must be capitalized as shown. You can find a full list of Slice
keywords in Appendix A.

Identifiers

Identifiers begin with an alphabetic character followed by any number of alpha-
betic characters or digits. Underscores are also permitted in identifiers with the
following limitations:

* an identifier cannot begin or end with an underscore
* an identifier cannot contain multiple consecutive underscores

Given these rules, the identifier get_account_name is legal but not _account,
account_, or get__account.

Slice identifiers are restricted to the ASCII range of alphabetic characters and
cannot contain non-English letters, such as A. (Supporting non-ASCII identifiers
would make it very difficult to map Slice to target languages that lack support for
this feature.)

Case Sensitivity

Identifiers are case-insensitive but must be capitalized consistently. For example,
TimeOfDay and TIMEOFDAY are considered the same identifier within a naming
scope. However, Slice enforces consistent capitalization. After you have intro-
duced an identifier, you must capitalize it consistently throughout; otherwise, the
compiler will reject it as illegal. This rule exists to permit mappings of Slice to
languages that ignore case in identifiers as well as to languages that treat differ-
ently capitalized identifiers as distinct.

Identifiers That Are Keywords

You can define Slice identifiers that are keywords in one or more implementation
languages. For example, switch is a perfectly good Slice identifier but is a C++
and Java keyword. Each language mapping defines rules for dealing with such
identifiers. The solution typically involves using a prefix to map away from the
keyword. For example, the Slice identifier switch is mapped to _cpp_switch
in C++and _switch in Java.

4.5 Lexical Rules 93

The rules for dealing with keywords can result in hard-to-read source code.
Identifiers such as native, throw, or export will clash with C++ or Java
keywords (or both). To make life easier for yourself and others, try to avoid Slice
identifiers that are implementation language keywords. Keep in mind that
mappings for new languages may be added to Ice in the future. While it is not
reasonable to expect you to compile a list of all keywords in all popular program-
ming languages, you should make an attempt to avoid at least common keywords.
Slice identifiers such as sel1f, import, and while are definitely not a good idea.

Escaped Identifiers

It is possible to use a Slice keyword as an identifier by prefixing the keyword with
a backslash, for example:

struct dictionary { // Error!
// ...

};

struct \dictionary { // OK
// ...

};

struct \foo { // Legal, same as "struct foo"
// ...

};

The backslash escapes the usual meaning of a keyword; in the preceding example,
\dictionary is treated as the identifier dictionary. The escape mechanism
exists to permit keywords to be added to the Slice language over time with
minimal disruption to existing specifications: if a pre-existing specification
happens to use a newly-introduced keyword, that specification can be fixed by
simply prepending a backslash to the new keyword. Note that, as a matter of style,
you should avoid using Slice keywords as identifiers (even though the backslash
escapes allow you to do this).

It is legal (though redundant) to precede an identifier that is not a keyword
with a backslash—the backslash is ignored in that case.

Reserved ldentifiers

Slice reserves the identifier Ice and all identifiers beginning with Ice (in any
capitalization) for the Ice implementation. For example, if you try to define a type
named Icecream, the Slice compiler will issue an error message.

94

The Slice Language

4.6

Slice identifiers ending in any of the suffixes Helper, Holder, Prx, and Ptr are
also reserved. These endings are used by the various language mappings and are
reserved to prevent name clashes in the generated code.

Modules

A common problem in large systems is pollution of the global namespace: over
time, as isolated systems are integrated, name clashes become quite likely. Slice
provides the module construct to alleviate this problem:

module ZeroC {
module Client {
// Definitions here...
};
module Server {
// Definitions here...
1
};

A module can contain any legal Slice construct, including other module defini-
tions. Using modules to group related definitions together avoids polluting the
global namespace and makes accidental name clashes quite unlikely. (You can use
a well-known name, such as a company or product name, as the name of the outer-
most module.)

Slice requires all definitions to be nested inside a module, that is, you cannot
define anything other than a module at global scope. For example, the following is
illegal:

interface I { // Error: only modules can appear at global scope
// ...
}s

Definitions at global scope are prohibited because they cause problems with some
implementation languages (such as Python, which does not have a true global
scope).

2. You can suppress this behavior by using the - - i ce compiler option, which enables definition of
identifiers beginning with Ice. However, do not use this option unless you are compiling the
Slice definitions for the Ice run time itself.

4.7 The Ice Module 95

NOTE:

4.7

Throughout the remainder of this book, you will occasionally see Slice definitions
that are not nested inside a module. This is to keep the examples short and free of
clutter. Whenever you see such a definition, assume that it is nested in a module.

Modules can be reopened:

module ZeroC {
// Definitions here...

};
// Possibly in a different source file:

module ZeroC { // OK, reopened module
// More definitions here...

}s

Reopened modules are useful for larger projects: they allow you to split the
contents of a module over several different source files. The advantage of doing
this is that, when a developer makes a change to one part of the module, only files
dependent on the changed part need be recompiled (instead of having to recompile
all files that use the module).

Modules map to a corresponding scoping construct in each programming
language. (For example, for C++ and C#, Slice modules map to namespaces
whereas, for Java, they map to packages.) This allows you to use an appropriate
C++ using or Java import declaration to avoid excessively long identifiers in
the source code.

The Ice Module

APIs for the Ice run time, apart from a small number of language-specific calls
that cannot be expressed in Ice, are defined in the Ice module. In other words,
most of the Ice API is actually expressed as Slice definitions. The advantage of
doing this is that a single Slice definition is sufficient to define the API for the Ice
run time for all supported languages. The respective language mapping rules then
determine the exact shape of each Ice API for each implementation language.

We will incrementally explore the contents of the Ice module throughout the
remainder of this book.

96 The Slice Language
4.8 Basic Slice Types

Slice provides a number of built-in basic types, shown in Table 4.1.
Table 4.1. Slice basic types.

Type Range of Mapped Type Size of Mapped Type

bool false or true > 1bit

byte —-128-127 or 0-255% > 8 bits

short [|-213t0 2151 > 16 bits

int 231402311 > 32 bits

Tong 263402631 > 64 bits

float IEEE single-precision > 32 bits

double ||IEEE double-precision > 64 bits

string || All Unicode characters, excluding | Variable-length

the character with all bits zero.
a. The range depends on whether byte maps to a signed or an unsigned type.
All the basic types (except byte) are subject to changes in representation as they
are transmitted between clients and servers. For example, a Tong value is byte-
swapped when sent from a little-endian to a big-endian machine. Similarly, strings
undergo translation in representation if they are sent, for example, from an
EBCDIC to an ASCII implementation, and the characters of a string may also
change in size. (Not all architectures use 8-bit characters). However, these
changes are transparent to the programmer and do exactly what is required.
4.8.1 Integer Types

Slice provides integer types short, int, and Tong, with 16-bit, 32-bit, and 64-bit
ranges, respectively. Note that, on some architectures, any of these types may be
mapped to a native type that is wider. Also note that no unsigned types are
provided. (This choice was made because unsigned types are difficult to map into
languages without native unsigned types, such as Java. In addition, the unsigned
integers add little value to a language. See [9] for a good treatment of the topic.)

4.8 Basic Slice Types 97

4.8.2

4.8.3

4.8.4

4.8.5

Floating-Point Types

These types follow the IEEE specification for single- and double-precision
floating-point representation [6]. If an implementation cannot support IEEE
format floating-point values, the Ice run time converts values into the native
floating-point representation (possibly at a loss of precision or even magnitude,
depending on the capabilities of the native floating-point format).

Strings

Slice strings use the Unicode character set. The only character that cannot appear
inside a string is the zero character.?

The Slice data model does not have the concept of a null string (in the sense of
a C++ null pointer). This decision was made because null strings are difficult to
map to languages without direct support for this concept (such as Python). Do not
design interfaces that depend on a null string to indicate “not there” semantics. If
you need the notion of an optional string, use a class (see Section 4.11), a
sequence of strings (see Section 4.9.3), or use an empty string to represent the idea
of a null string. (Of course, the latter assumes that the empty string is not other-
wise used as a legitimate string value by your application.)

Booleans

Boolean values can have only the values false and true. Language mappings use
the corresponding native boolean type if one is available.

Bytes

The Slice type byte is an (at least) 8-bit type that is guaranteed not to undergo any
changes in representation as it is transmitted between address spaces. This guar-
antee permits exchange of binary data such that it is not tampered with in transit.
All other Slice types are subject to changes in representation during transmission.

3. This decision was made as a concession to C++, with which it becomes impossibly difficult to
manipulate strings with embedded zero characters using standard library routines, such as
strlenor strcat.

98

The Slice Language

4.9 User-Defined Types

4.9.1

4.9.2

In addition to providing the built-in basic types, Slice allows you to define
complex types: enumerations, structures, sequences, and dictionaries.

Enumerations
A Slice enumerated type definition looks like the C++ version:

enum Fruit { Apple, Pear, Orange };

This definition introduces a type named Fruit that becomes a new type in its own
right. Slice does not define how ordinal values are assigned to enumerators. For
example, you cannot assume that the enumerator Orange will have the value 2 in
different implementation languages. Slice guarantees only that the ordinal values
of enumerators increase from left to right, so Apple compares less than Pear in all
implementation languages.

Unlike C++, Slice does not permit you to control the ordinal values of
enumerators (because many implementation languages do not support such a
feature):

enum Fruit { Apple = @, Pear = 7, Orange = 2 }; // Syntax error

In practice, you do not care about the values used for enumerators as long as you
do not transmit the ordinal value of an enumerator between address spaces. For
example, sending the value 0 to a server to mean Apple can cause problems
because the server may not use 0 to represent Apple. Instead, simply send the
value Apple itself. If Apple is represented by a different ordinal value in the
receiving address space, that value will be appropriately translated by the Ice run
time.

As with C++, Slice enumerators enter the enclosing namespace, so the
following is illegal:

enum Fruit { Apple, Pear, Orange };
enum ComputerBrands { Apple, IBM, Sun, HP }; // Apple redefined

Slice does not permit empty enumerations.

Structures

Slice supports structures containing one or more named members of arbitrary
type, including user-defined complex types. For example:

4.9 User-Defined Types 99

struct TimeOfDay {

short hour; // @ - 23
short minute; // @ - 59
short second; // @ - 59

};

As in C++, this definition introduces a new type called TimeOfDay. Structure defi-
nitions form a namespace, so the names of the structure members need to be
unique only within their enclosing structure.

Data member definitions using a named type are the only construct that can
appear inside a structure. It is impossible to, for example, define a structure inside
a structure:

struct TwoPoints {

struct Point { // ITlegal!
short x;
short y;

1

Point coordl;

Point coord?2;

}s

This rule applies to Slice in general: type definitions cannot be nested (except for
modules, which do support nesting—see Section 4.6). The reason for this rule is
that nested type definitions can be difficult to implement for some target
languages and, even if implementable, greatly complicate the scope resolution
rules. For a specification language, such as Slice, nested type definitions are
unnecessary—you can always write the above definitions as follows (which is
stylistically cleaner as well):
struct Point {

short x;

short y;
};

struct TwoPoints { // Legal (and cleaner!)
Point coordl;
Point coord?2;
s
You can specify a default value for a data member that has one of the following
types:
* An integral type (bool, byte, short, int, Tong, or an enumerated type)

®* float or double

100 The Slice Language
® string
For example:
struct Location {
string name;
Point pt;
bool display = true;
string source = "GPS";
¥
The legal syntax for literal values is the same as for Slice constants (see
Section 4.9.5). The language mapping guarantees that data members are initial-
ized to their declared default values using a language-specific mechanism.
4.9.3 Sequences

Sequences are variable-length collections of elements:

sequence<Fruit> FruitPlatter;

A sequence can be empty—that is, it can contain no elements, or it can hold any
number of elements up to the memory limits of your platform.

Sequences can contain elements that are themselves sequences. This arrange-
ment allows you to create lists of lists:

sequence<FruitPlatter> FruitBanquet;

Sequences are used to model a variety of collections, such as vectors, lists, queues,
sets, bags, or trees. (It is up to the application to decide whether or not order is
important; by discarding order, a sequence serves as a set or bag.)

One particular use of sequences has become idiomatic, namely, the use of a
sequence to indicate an optional value. For example, we might have a Part struc-
ture that records the details of the parts that go into a car. The structure could
record things such as the name of the part, a description, weight, price, and other
details. Spare parts commonly have a serial number, which we can model as a
Tong value. However, some parts, such as simple screws, often do not have a serial
number, so what are we supposed to put into the serial number field of a screw?
There are a number of options for dealing with this situation:

* Use a sentinel value, such as zero, to indicate the “no serial number” condi-
tion.

This approach is workable, provided that a sentinel value is actually available.
While it may seem unlikely that anyone would use a serial number of zero for

4.9 User-Defined Types 101

a part, it is not impossible. And, for other values, such as a temperature value,
all values in the range of their type can be legal, so no sentinel value is avail-
able.

* Change the type of the serial number from Tlong to string.

Strings come with their own built-in sentinel value, namely, the empty string
S0 we can use an empty string to indicate the “no serial number” case. This is
workable, but leaves a bad taste in most people’s mouth: we should not have
to change the natural data type of something to string just so we get a
sentinel value.

* Add an indicator as to whether the contents of the serial number are valid:

struct Part {
string name;
string description;
// ...
bool seriallsvValid; // true if part has serial number
Tong serialNumber;

};

This is distasteful to most people and guaranteed to get you into trouble even-
tually: sooner or later, some programmer will forget to check whether the
serial number is valid before using it and create havoc.

* Use a sequence to model the optional field.

This technique uses the following convention:

sequence<long> SerialOpt;

struct Part {

string name;
string description;
// ...

SerialOpt serialNumber; // optional: zero or one element

};

By convention, the Opt suffix is used to indicate that the sequence is used to
model an optional value. If the sequence is empty, the value is obviously not
there; if it contains a single element, that element is the value. The obvious
drawback of this scheme is that someone could put more than one element into
the sequence. This could be rectified by adding a special-purpose Slice
construct for optional values. However, optional values are not used
frequently enough to justify the complexity of adding a dedicated language

102

The Slice Language

feature. (As we will see in Section 4.11, you can also use class hierarchies to
model optional fields.)

4.9.4 Dictionaries

A dictionary is a mapping from a key type to a value type. For example:

struct Employee {
Tong number;
string firstName;
string lastName;

}s
dictionary<long, Employee> EmployeeMap;

This definition creates a dictionary named EmployeeMap that maps from an
employee number to a structure containing the details for an employee. Whether
or not the key type (the employee number, of type Tong in this example) is also
part of the value type (the Employee structure in this example) is up to you—as far
as Slice is concerned, there is no need to include the key as part of the value.

Dictionaries can be used to implement sparse arrays, or any lookup data struc-
ture with non-integral key type. Even though a sequence of structures containing
key—value pairs could be used to model the same thing, a dictionary is more
appropriate:

* A dictionary clearly signals the intent of the designer, namely, to provide a
mapping from a domain of values to a range of values. (A sequence of struc-
tures of key—value pairs does not signal that same intent as clearly.)

* At the programming language level, sequences are implemented as vectors (or
possibly lists), that is, they are not well suited to model sparsely populated
domains and require a linear search to locate an element with a particular
value. On the other hand, dictionaries are implemented as a data structure
(typically a hash table or red-black tree) that supports efficient searching in
O(log n) average time or better.

The key type of a dictionary need not be an integral type. For example, we could
use the following definition to translate the names of the days of the week:

dictionary<string, string> WeekdaysEnglishToGerman;

The server implementation would take care of initializing this map with the key—
value pairs Monday-Montag, Tuesday-Dienstag, and so on.

4.9 User-Defined Types 103

4.9.5

The value type of a dictionary can be any user-defined type. However, the key
type of a dictionary is limited to one of the following types:

* Integral types (byte, short, int, Tong, booTl, and enumerated types)
® string
* structures containing only data members of integral type or string

Complex nested types, such as nested structures, sequences, or dictionaries, and
floating-point types (float and double) cannot be used as the key type. Complex
nested types are disallowed because they complicate the language mappings for
dictionaries, and floating-point types are disallowed because representational
changes of values as they cross machine boundaries can lead to ill-defined seman-
tics for equality.

Constant Definitions and Literals

Slice allows you to define constants. Constant definitions must be of one of the
following types:

* An integral type (bool, byte, short, int, Tong, or an enumerated type)
* float or double
® string

Here are a few examples:

const bool AppendByDefault = true;
const byte LowerNibble = 0x0f;
const string Advice = "Don't Panic!";
const short TheAnswer = 42;

const double PI = 3.1416;

enum Fruit { Apple, Pear, Orange };
const Fruit FavoriteFruit = Pear;

The syntax for literals is the same as for C++ and Java (with a few minor excep-
tions):

* Boolean constants can only be initialized with the keywords false and true.
(You cannot use 0 and 1 to represent false and true.)

* As for C++, integer literals can be specified in decimal, octal, or hexadecimal
notation. For example:

104

The Slice Language

const byte TheAnswer = 42;
const byte TheAnswerInOctal = @

const byte TheAnswerInHex = 0x2A;

52;
// or 0x2a

Be aware that, if you interpret byte as a number instead of a bit pattern, you
may get different results in different languages. For example, for C++, byte
maps to unsigned char whereas, for Java, byte maps to byte, which is a

signed type.

Note that suffixes to indicate long and
C++) are illegal:

const Tong Wrong = Qu;
const long WrongToo = 1000000L ;

The value of an integer literal must be

unsigned constants (1, L, u, U, used by

// Syntax error
// Syntax error

within the range of its constant type, as

shown in Table 4.1 on page 96; otherwise the compiler will issue a diagnostic.

Floating-point literals use C++ syntax, except that you cannot use an 1 or L
suffix to indicate an extended floating-point constant; however, f and F are

legal (but are ignored). Here are a few

const float Pl = -3.14f; //
const float P2 = +3.1le-3; //
const float P3 = .1; //
const float P4 = 1.; //
const float P5 = .9E5; //
const float P6 = 5e2; //

examples:

Integer & fraction, with suffix
Integer, fraction, and exponent
Fraction part only

Integer part only

Fraction part and exponent
Integer part and exponent

Floating-point literals must be within the range of the constant type (float or
double); otherwise, the compiler will issue a diagnostic.

String literals support the same escape sequences as C++. Here are some

examples:

const string AnOrdinaryString =

const string DoubTleQuote =
const string TwoSingleQuotes
const string Newline =

const string CarriageReturn =
const string HorizontalTab =
const string VerticalTab =
const string FormFeed =

const string Alert =

const string Backspace =
const string QuestionMark =

"Hello World!";

mni \ ™ ;
"\n";
"\r";
"\t";
"\Vv";
"\f";
"\a";
"\b";
"\?";

// ' and \' are OK

4.10 Interfaces, Operations, and Exceptions 105

const string Backslash = "\\";
const string OctalEscape = "\007"; // Same as \a
const string HexEscape = "\x07"; // Ditto

const string UniversalCharName = "\u@3A9"; // Greek Omega

As for C++, adjacent string literals are concatenated:

const string MSG1l = "Hello World!";
const string MSG2 = "Hello" " " "World!"; // Same message

/%

+ Escape sequences are processed before concatenation,
+# so the string below contains two characters,

'"\xa' and 'c'

c .
:'c/

const string S = "\xa" "c";
Note that Slice has no concept of a null string:
const string nullString = 0; // ITlegal!

Null strings simply do not exist in Slice and, therefore, do not exist as a legal
value for a string anywhere in the Ice platform. The reason for this decision is
that null strings do not exist in many programming languages.4

4.10 Interfaces, Operations, and Exceptions

The central focus of Slice is on defining interfaces, for example:

struct TimeOfDay {

short hour; // 0 - 23
short minute; // 0 - 59
short second; // 0 - 59

};

4. Many languages other than C and C++ use a byte array as the internal string representation. Null
strings do not exist (and would be very difficult to map) in such languages.

106

The Slice Language

interface Clock {

TimeOfDay getTime();

void setTime(TimeOfDay time);
};

This definition defines an interface type called Clock. The interface supports two
operations: getTime and setTime. Clients access an object supporting the Clock
interface by invoking an operation on the proxy for the object: to read the current
time, the client invokes the getTime operation; to set the current time, the client
invokes the setTime operation, passing an argument of type TimeOfDay.

Invoking an operation on a proxy instructs the Ice run time to send a message
to the target object. The target object can be in another address space or can be
collocated (in the same process) as the caller—the location of the target object is
transparent to the client. If the target object is in another (possibly remote) address
space, the Ice run time invokes the operation via a remote procedure call; if the
target is collocated with the client, the Ice run time uses an ordinary function call
instead, to avoid the overhead of marshaling.

You can think of an interface definition as the equivalent of the public part of a
C++ class definition or as the equivalent of a Java interface, and of operation defi-
nitions as (virtual) member functions. Note that nothing but operation definitions
are allowed to appear inside an interface definition. In particular, you cannot
define a type, an exception, or a data member inside an interface. This does not
mean that your object implementation cannot contain state—it can, but how that
state is implemented (in the form of data members or otherwise) is hidden from
the client and, therefore, need not appear in the object’s interface definition.

An Ice object has exactly one (most derived) Slice interface type (or class
type—see Section 4.11). Of course, you can create multiple Ice objects that have
the same type; to draw the analogy with C++, a Slice interface corresponds to a
C++ class definition, whereas an Ice object corresponds to a C++ class instance
(but Ice objects can be implemented in multiple different address spaces).

Ice also provides multiple interfaces via a feature called facets. We discuss
facets in detail in Chapter 33.

A Slice interface defines the smallest grain of distribution in Ice: each Ice
object has a unique identity (encapsulated in its proxy) that distinguishes it from
all other Ice objects; for communication to take place, you must invoke operations
on an object’s proxy. There is no other notion of an addressable entity in Ice. You
cannot, for example, instantiate a Slice structure and have clients manipulate that
structure remotely. To make the structure accessible, you must create an interface
that allows clients to access the structure.

4.10 Interfaces, Operations, and Exceptions 107

4.10.1

The partition of an application into interfaces therefore has profound influence
on the overall architecture. Distribution boundaries must follow interface (or
class) boundaries; you can spread the implementation of interfaces over multiple
address spaces (and you can implement multiple interfaces in the same address
space), but you cannot implement parts of interfaces in different address spaces.

Parameters and Return Values

An operation definition must contain a return type and zero or more parameter
definitions. For example, the get Time operation on page 105 has a return type of
TimeOfDay and the setTime operation has a return type of void. You must use
void to indicate that an operation returns no value—there is no default return type
for Slice operations.

An operation can have one or more input parameters. For example, setTime
accepts a single input parameter of type TimeOfDay called time. Of course, you
can use multiple input parameters, for example:

interface CircadianRhythm {
void setSleepPeriod(TimeOfDay startTime, TimeOfDay stopTime);

/] ...
};

Note that the parameter name (as for Java) is mandatory. You cannot omit the
parameter name, so the following is in error:

interface CircadianRhythm {
void setSleepPeriod(TimeOfDay, TimeOfDay); // Error!
// ...

};

By default, parameters are sent from the client to the server, that is, they are input
parameters. To pass a value from the server to the client, you can use an output
parameter, indicated by the out keyword. For example, an alternative way to
define the getTime operation on page 105 would be:

void getTime(out TimeOfDay time);

This achieves the same thing but uses an output parameter instead of the return
value. As with input parameters, you can use multiple output parameters:

108

The Slice Language

interface CircadianRhythm {
void setSleepPeriod(TimeOfDay startTime, TimeOfDay stopTime);
void getSleepPeriod(out TimeOfDay startTime,
out TimeOfDay stopTime);
// ...
};

If you have both input and output parameters for an operation, the output parame-
ters must follow the input parameters:

void changeSleepPeriod(TimeOfDay startTime, // OK
TimeOfDay stopTime,
out TimeOfDay prevStartTime,
out TimeOfDay prevStopTime);
void changeSleepPeriod(out TimeOfDay prevStartTime,
out TimeOfDay prevStopTime,
TimeOfDay startTime, // Error
TimeOfDay stopTime);

Slice does not support parameters that are both input and output parameters (call
by reference). The reason is that, for remote calls, reference parameters do not
result in the same savings that one can obtain for call by reference in program-
ming languages. (Data still needs to be copied in both directions and any gains in
marshaling efficiency are negligible.) Also, reference (or input—output) parame-
ters result in more complex language mappings, with concomitant increases in
code size.

Style of Operation Definition

As you would expect, language mappings follow the style of operation definition
you use in Slice: Slice return types map to programming language return types,
and Slice parameters map to programming language parameters.

For operations that return only a single value, it is common to return the value
from the operation instead of using an out-parameter. This style maps naturally
into all programming languages. Note that, if you use an out-parameter instead,
you impose a different API style on the client: most programming languages
permit the return value of a function to be ignored whereas it is typically not
possible to ignore an output parameter.

For operations that return multiple values, it is common to return all values as
out-parameters and to use a return type of void. However, the rule is not all that
clear-cut because operations with multiple output values can have one particular
value that is considered more “important” than the remainder. A common example
of this is an iterator operation that returns items from a collection one-by-one:

4.10 Interfaces, Operations, and Exceptions 109

bool next(out RecordType r);

The next operation returns two values: the record that was retrieved and a
Boolean to indicate the end-of-collection condition. (If the return value is false,
the end of the collection has been reached and the parameter r has an undefined
value.) This style of definition can be useful because it naturally fits into the way
programmers write control structures. For example:

while (next (record))
// Process record...

if (next (record))
// Got a valid record...

Overloading
Slice does not support any form of overloading of operations. For example:

interface CircadianRhythm {
void modify(TimeOfDay startTime,
TimeOfDay endTime);
void modify(TimeOfDay startTime, // Error
TimeOfDay endTime,
out timeOfDay prevStartTime,
out TimeOfDay prevEndTime);
b

Operations in the same interface must have different names, regardless of what
type and number of parameters they have. This restriction exists because over-
loaded functions cannot sensibly be mapped to languages without built-in support
for overloading.5

Idempotent Operations

Some operations, such as getTime on page 105, do not modify the state of the
object they operate on. They are the conceptual equivalent of C++ const
member functions. Similary, setTime does modify the state of the object, but is
idempotent. You can indicate this in Slice as follows:

5. Name mangling is not an option in this case: while it works fine for compilers, it is unacceptable
to humans.

110

The Slice Language

interface Clock {
idempotent TimeOfDay getTime();
idempotent void setTime(TimeOfDay time);

};

This marks the getTime and setTime operations as idempotent. An operation is
idempotent if two successive invocations of the operation have the same effect as a
single invocation. For example, x = 1; is an idempotent operation because it
does not matter whether it is executed once or twice—either way, x ends up with
the value 1. On the other hand, x += 1; is not an idempotent operation because
executing it twice results in a different value for x than executing it once. Obvi-
ously, any read-only operation is idempotent.

The idempotent keyword is useful because it allows the Ice run time to
attempt more aggressive error recovery. Specifically, Ice guarantees at-most-once
semantics for operation invocations:

* For normal (not idempotent) operations, the Ice run time has to be conserva-
tive about how it deals with errors. For example, if a client sends an operation
invocation to a server and then loses connectivity, there is no way for the
client-side run time to find out whether the request it sent actually made it to
the server. This means that the run time cannot attempt to recover from the
error by re-establishing a connection and sending the request a second time
because that could cause the operation to be invoked a second time and violate
at-most-once semantics; the run time has no option but to report the error to
the application.

* For idempotent operations, on the other hand, the client-side run time can
attempt to re-establish a connection to the server and safely send the failed
request a second time. If the server can be reached on the second attempt,
everything is fine and the application never notices the (temporary) failure.
Only if the second attempt fails need the run time report the error back to the
application. (The number of retries can be increased with an Ice configuration
parameter.)

4.10.2 User Exceptions

Looking at the setTime operation on page 105, we find a potential problem: given
that the TimeOfDay structure uses short as the type of each field, what will
happen if a client invokes the setTime operation and passes a TimeOfDay value
with meaningless field values, such as -199 for the minute field, or 42 for the
hour? Obviously, it would be nice to provide some indication to the caller that this

4.10 Interfaces, Operations, and Exceptions 111

is meaningless. Slice allows you to define user exceptions to indicate error condi-
tions to the client. For example:

exception Error {}; // Empty exceptions are Tlegal

exception RangeError {
TimeOfDay errorTime;
TimeOfDay minTime;
TimeOfDay maxTime;

}s

A user exception is much like a structure in that it contains a number of data
members. However, unlike structures, exceptions can have zero data members,
that is, be empty.

You can specify a default value for an exception data member that has one of
the following types:

* An integral type (bool, byte, short, int, Tong, or an enumerated type)

® float or double
® string
For example:

exception RangeError {
TimeOfDay errorTime;
TimeOfDay minTime;
TimeOfDay maxTime;
string reason = "out of range";

};

The legal syntax for literal values is the same as for Slice constants (see
Section 4.9.5). The language mapping guarantees that data members are initial-
ized to their declared default values using a language-specific mechanism.

Exceptions allow you to return an arbitrary amount of error information to the
client if an error condition arises in the implementation of an operation. Opera-
tions use an exception specification to indicate the exceptions that may be
returned to the client:

interface Clock {
idempotent TimeOfDay getTime();
idempotent void setTime(TimeOfDay time)
throws RangeError, Error;

112

The Slice Language

4.10.3

This definition indicates that the setTime operation may throw either a Rang-
eError or an Error user exception (and no other type of exception). If the client
receives a RangeError exception, the exception contains the TimeOfDay value that
was passed to setTime and caused the error (in the errorTime member), as well
as the minimum and maximum time values that can be used (in the minTime and
maxTime members). If setTime failed because of an error not caused by an illegal
parameter value, it throws Error. Obviously, because Error does not have data
members, the client will have no idea what exactly it was that went wrong—it
simply knows that the operation did not work.

An operation can throw only those user exceptions that are listed in its excep-
tion specification. If, at run time, the implementation of an operation throws an
exception that is not listed in its exception specification, the client receives a run-
time exception (see Section 4.10.4) to indicate that the operation did something
illegal. To indicate that an operation does not throw any user exception, simply
omit the exception specification. (There is no empty exception specification in
Slice.)

Exceptions are not first-class data types and first-class data types are not
exceptions:

* You cannot pass an exception as a parameter value.

* You cannot use an exception as the type of a data member.

* You cannot use an exception as the element type of a sequence.

* You cannot use an exception as the key or value type of a dictionary.

® You cannot throw a value of non-exception type (such as a value of type int
or string).

The reason for these restrictions is that some implementation languages use a
specific and separate type for exceptions (in the same way as Slice does). For such
languages, it would be difficult to map exceptions if they could be used as an ordi-
nary data type. (C++ is somewhat unusual among programming languages by
allowing arbitrary types to be used as exceptions.)

Exception Inheritance
Exceptions support inheritance. For example:

exception ErrorBase {
string reason;

};

4.10 Interfaces, Operations, and Exceptions 113

enum RTError {
DivideByZero, NegativeRoot, IllegalNull /+ ... */
};

exception RuntimeError extends ErrorBase {
RTError err;

b
enum LError { ValueOutOfRange, ValuesInconsistent, /x ... %/ };

exception LogicError extends ErrorBase {
LError err;

}s

exception RangeError extends LogicError {
TimeOfDay errorTime;
TimeOfDay minTime;
TimeOfDay maxTime;

b
These definitions set up a simple exception hierarchy:

® ErrorBase is at the root of the tree and contains a string explaining the cause
of the error.

® Derived from ErrorBase are RuntimeError and LogicError. Each of these
exceptions contains an enumerated value that further categorizes the error.

* Finally, RangeError is derived from LogicError and reports the details of the
specific error.

Setting up exception hierarchies such as this not only helps to create a more read-
able specification because errors are categorized, but also can be used at the
language level to good advantage. For example, the Slice C++ mapping preserves
the exception hierarchy so you can catch exceptions generically as a base excep-
tion, or set up exception handlers to deal with specific exceptions.

Looking at the exception hierarchy on page 112, it is not clear whether, at run
time, the application will only throw most derived exceptions, such as Rang-
eError, or if it will also throw base exceptions, such as LogicError, Runti-
meError, and ErrorBase. If you want to indicate that a base exception, interface,
or class is abstract (will not be instantiated), you can add a comment to that effect.

Note that, if the exception specification of an operation indicates a specific
exception type, at run time, the implementation of the operation may also throw
more derived exceptions. For example:

114

The Slice Language

exception Base {
// ...
};

exception Derived extends Base {
// ...
};

interface Example {
void op() throws Base; // May throw Base or Derived

};

In this example, op may throw a Base or a Derived exception, that is, any excep-
tion that is compatible with the exception types listed in the exception specifica-
tion can be thrown at run time.

As a system evolves, it is quite common for new, derived exceptions to be
added to an existing hierarchy. Assume that we initially construct clients and
server with the following definitions:

exception Error {
// ...
};

interface Application {
void doSomething() throws Error;

}s

Also assume that a large number of clients are deployed in field, that is, when you
upgrade the system, you cannot easily upgrade all the clients. As the application
evolves, a new exception is added to the system and the server is redeployed with
the new definition:

exception Error {
// ...
};

exception FatalApplicationError extends Error {
// ...
b

interface Application {
void doSomething() throws Error;

};

4.10 Interfaces, Operations, and Exceptions 115

4104

This raises the question of what should happen if the server throws a FatalApp1i-
cationError from doSomething. The answer depends whether the client was
built using the old or the updated definition:

* If the client was built using the same definition as the server, it simply
receives a FatalApplicationError.

¢ If the client was built with the original definition, that client has no knowledge
that FatalApplicationError even exists. In this case, the Ice run time auto-
matically slices the exception to the most-derived type that is understood by
the receiver (Error, in this case) and discards the information that is specific
to the derived part of the exception. (This is exactly analogous to catching
C++ exceptions by value—the exception is sliced to the type used in the
catch-clause.)

Exceptions support single inheritance only. (Multiple inheritance would be diffi-
cult to map into many programming languages.)

Ice Run-Time Exceptions

As mentioned in Section 2.2.2, in addition to any user exceptions that are listed in
an operation’s exception specification, an operation can also throw Ice run-time
exceptions. Run-time exceptions are predefined exceptions that indicate platform-
related run-time errors. For example, if a networking error interrupts communica-
tion between client and server, the client is informed of this by a run-time excep-
tion, such as ConnectTimeoutException or SocketException.

The exception specification of an operation must not list any run-time excep-
tions. (It is understood that all operations can raise run-time exceptions and you
are not allowed to restate that.)

116 The Slice Language

Inheritance Hierarchy for Exceptions

All the Ice run-time and user exceptions are arranged in an inheritance hierarchy,
as shown in Figure 4.3.

Exception

Specific Run-Time Exceptions... "’_’_‘ ‘ Specific User Exceptions... "’_’_‘
I T
T T
T T

Figure 4.3. Inheritance structure for exceptions.

Ice::Exception is at the root of the inheritance hierarchy. Derived from that are
the (abstract) types Ice::LocalException and Ice: :UserException. In turn, all
run-time exceptions are derived from Ice: :LocalException, and all user excep-
tions are derived from Ice: :UserException.

4.10 Interfaces, Operations, and Exceptions 117

Figure 4.4 shows the complete hierarchy of the Ice run-time exceptions.6

Exception

LocalException UserException

A

RequestFailedException

SyscallException

UnknownException

SocketException ‘ ‘FiIeException |

_ _ ObjectNotExistException
UnknownLocalException ConnectFailedException OperationNotExistException
UnknownUserException ConnectionLostException FacetNotExistException

ConnectionRefusedException

TimeoutException

InitializationException
llegalldentityException

ProtocolException

IdentityParseException ConnectTimeoutException
PlugininitializationException ConnectionTimeoutException
DNSException CloseTimeoutException
ProxyParseException

NoEndpointException

ObjectAdapterDeactivatedException
ObjectAdapterNamelnUseException

ObjectAdapterldinUseException BadMagicException .
VersionMismatchException UnsupportedProtocolException

CommunicatorDestroyedException UnsupportedEncodingException

EndpointParseException UnknownMessageException .
EndpointSelectionTypeParseException ConnectionNotValidatedException ProxyUnmarshalException
LocationForwardldentityException UnknownRequestldException UnmarshalOutOfBoundsException
PlugininitializationException UnknownReplyStatusException lllegallndirectionException
CollocationOptimizationException CloseConnectionException MemoryLimitException
AlreadyRegisteredException ForcedCloseConnectionException EncapsulationException
NotRegisteredException AbortBatchRequestException NoObjectFactoryException
TwowayOnlyException lllegalMessageSizeException UnexpectedObjectException
CloneNotimplementedException CompressionException EncapsulationException
SecurityException DatagramLimitException StringConversionException

FixedProxyException
FeatureNotSupportedException

Figure 4.4. Ice run-time exception hierarchy. (Shaded exceptions can be sent by the server.)

6. We use the Unified Modeling Language (UML) for the object model diagrams in this book
(see [1] and [13] for details).

118

The Slice Language

Note that Figure 4.4 groups several exceptions into a single box to save space
(which, strictly, is incorrect UML syntax). Also note that some run-time excep-
tions have data members, which, for brevity, we have omitted in Figure 4.4. These
data members provide additional information about the precise cause of an error.

Many of the run-time exceptions have self-explanatory names, such as Memor-
yLimitException. Others indicate problems in the Ice run time, such as Encap-
sulationException. Still others can arise only through application programming
errors, such as TwowayOnlyException. In practice, you will likely never see most
of these exceptions. However, there are a few run-time exceptions you will
encounter and whose meaning you should know.

Local Versus Remote Exceptions

Most error conditions are detected on the client side. For example, if an attempt to
contact a server fails, the client-side run time raises a ConnectTimeoutExcep-
tion. However, there are three specific error conditions (shaded in Figure 4.4) that
are detected by the server and made known explicitly to the client-side run time
via the Ice protocol:

® ObjectNotExistException

This exception indicates that a request was delivered to the server but the
server could not locate a servant with the identity that is embedded in the
proxy. In other words, the server could not find an object to dispatch the
request to.

An ObjectNotExistException is a death certificate: it indicates that the
target object in the server does not exist.” Most likely, this is the case because
the object existed some time in the past and has since been destroyed, but the
same exception is also raised if a client uses a proxy with the identity of an
object that has never been created. If you receive this exception, you are
expected to clean up whatever resources you might have allocated that relate
to the specific object for which you receive this exception.

®* FacetNotExistException

The client attempted to contact a non-existent facet of an object, that is, the
server has at least one servant with the given identity, but no servant with a
matching facet name. (See Chapter 33 for a discussion of facets.)

7. The Ice run time raises ObjectNotExistException only if there are no facets in existence
with a matching identity; otherwise, it raises FacetNotExistException (see Chapter 33).

4.10 Interfaces, Operations, and Exceptions 119

® OperationNotExistException

This exception is raised if the server could locate an object with the correct
identity but, on attempting to dispatch the client’s operation invocation, the
server found that the target object does not have such an operation. You will
see this exception in only two cases:

® You have used an unchecked down-cast on a proxy of the incorrect type.
(See page 208 and page 345 for unchecked down-casts.)

* Client and server have been built with Slice definitions for an interface that
disagree with each other, that is, the client was built with an interface defini-
tion for the object that indicates that an operation exists, but the server was
built with a different version of the interface definition in which the opera-
tion is absent.

Any error condition on the server side that is not described by one of the three
preceding exceptions is made known to the client as one of three generic excep-
tions (shaded in Figure 4.4):

® UnknownUserException

This exception indicates that an operation implementation has thrown a Slice
exception that is not declared in the operation’s exception specification (and is
not derived from one of the exceptions in the operation’s exception specifica-
tion).

¢ UnknownLocalException

If an operation implementation raises a run-time exception other than Object-
NotExistException, FacetNotExistException, or OperationNotExistEx-
ception (such as a NotRegisteredException), the client receives an
UnknownLocalException. In other words, the Ice protocol does not transmit
the exact exception that was encountered in the server, but simply returns a bit
to the client in the reply to indicate that the server encountered a run-time
exception.

A common cause for a client receiving an UnknownLocalException is failure
to catch and handle all exceptions in the server. For example, if the implemen-
tation of an operation encounters an exception it does not handle, the excep-
tion propagates all the way up the call stack until the stack is unwound to the
point where the Ice run time invoked the operation. The Ice run time catches
all Ice exceptions that “escape” from an operation invocation and returns them
to the client as an UnknownlLocalException.

120

The Slice Language

4.10.5

® UnknownException

An operation has thrown a non-Ice exception. For example, if the operation in
the server throws a C++ exception, such as a char *, or a Java exception,
such as a ClassCastException, the client receives an UnknownExcep-
tion.

All other run-time exceptions (not shaded in Figure 4.4) are detected by the client-
side run time and are raised locally.

It is possible for the implementation of an operation to throw Ice run-time
exceptions (as well as user exceptions). For example, if a client holds a proxy to
an object that no longer exists in the server, your server application code is
required to throw an ObjectNotExistException. If you do throw run-time excep-
tions from your application code, you should take care to throw a run-time excep-
tion only if appropriate, that is, do not use run-time exceptions to indicate
something that really should be a user exception. Doing so can be very confusing
to the client: if the application “hijacks” some run-time exceptions for its own
purposes, the client can no longer decide whether the exception was thrown by the
Ice run time or by the server application code. This can make debugging very
difficult.

Interface Semantics and Proxies
Building on the Clock example, we can create definitions for a world-time server:

exception GenericError {
string reason;

};

struct TimeOfDay {
short hour; // 0 - 23
short minute; // @ - 59
short second; // @0 - 59

};
exception BadTimeVal extends GenericError {};

interface Clock {
idempotent TimeOfDay getTime();
idempotent void setTime(TimeOfDay time) throws BadTimeVal;

}s

dictionary<string, Clockx> TimeMap; // Time zone name to clock map

4.10 Interfaces, Operations, and Exceptions 121

exception BadZoneName extends GenericError {};

interface WorldTime {
idempotent void addZone(string zoneName, Clockx zoneClock);
void removeZone(string zoneName) throws BadZoneName;
idempotent Clocks findZone(string zoneName)
throws BadZoneName;
idempotent TimeMap listZones();
idempotent void setZones(TimeMap zones);

};

The Wor1dTime interface acts as a collection manager for clocks, one for each
time zone. In other words, the Wor1dTime interface manages a collection of pairs.
The first member of each pair is a time zone name; the second member of the pair
is the clock that provides the time for that zone. The interface contains operations
that permit you to add or remove a clock from the map (addZone and remove-
Zone), to search for a particular time zone by name (findZone), and to read or
write the entire map (1istZones and setZones).

The Wor1dTime example illustrates an important Slice concept: note that
addZone accepts a parameter of type Clock+ and findZone returns a parameter of
type Clock=. In other words, interfaces are types in their own right and can be
passed as parameters. The = operator is known as the proxy operator. Its left-hand
argument must be an interface (or class—see Section 4.11) and its return type is a
proxy. A proxy is like a pointer that can denote an object. The semantics of
proxies are very much like those of C++ class instance pointers:

* A proxy can be null (see page 126).
* A proxy can dangle (point at an object that is no longer there)

® Operations dispatched via a proxy use late binding: if the actual run-time type
of the object denoted by the proxy is more derived than the proxy’s type, the
implementation of the most-derived interface will be invoked.

When a client passes a Clock proxy to the addZone operation, the proxy denotes
an actual Clock object in a server. The Clock Ice object denoted by that proxy
may be implemented in the same server process as the Wor1dTime interface, or in
a different server process. Where the Clock object is physically implemented
matters neither to the client nor to the server implementing the Wor1dTime inter-
face; if either invokes an operation on a particular clock, such as getTime, an RPC
call is sent to whatever server implements that particular clock. In other words, a
proxy acts as a local “ambassador” for the remote object; invoking an operation on
the proxy forwards the invocation to the actual object implementation. If the

122

The Slice Language

4.10.6

object implementation is in a different address space, this results in a remote
procedure call; if the object implementation is collocated in the same address
space, the Ice run time uses an ordinary local function call from the proxy to the
object implementation.

Note that proxies also act very much like pointers in their sharing semantics: if
two clients have a proxy to the same object, a state change made by one client
(such as setting the time) will be visible to the other client.

Proxies are strongly typed (at least for statically typed languages, such as C++
and Java). This means that you cannot pass something other than a Clock proxy to
the addZone operation; attempts to do so are rejected at compile time.

Interface Inheritance

Interfaces support inheritance. For example, we could extend our world-time
server to support the concept of an alarm clock:

interface AlarmClock extends Clock {
idempotent TimeOfDay getAlarmTime();
idempotent void setAlarmTime(TimeOfDay alarmTime)
throws BadTimeVal;
};

The semantics of this are the same as for C++ or Java: AlarmClock is a subtype of
Clock and an ATarmClock proxy can be substituted wherever a Clock proxy is
expected. Obviously, an AlarmClock supports the same getTime and setTime
operations as a Clock but also supports the getAlarmTime and setAlarmTime
operations.

Multiple interface inheritance is also possible. For example, we can construct
a radio alarm clock as follows:

interface Radio {
void setFrequency(long hertz) throws GenericError;
void setVolume(long dB) throws GenericError;

};
enum AlarmMode { RadioAlarm, BeepAlarm };

interface RadioClock extends Radio, AlarmClock {
void setMode (ATarmMode mode);
AlarmMode getMode();

};

4.10 Interfaces, Operations, and Exceptions 123

RadioClock extends both Radio and AlarmClock and can therefore be passed
where a Radio, an AlarmClock, or a Clock is expected. The inheritance diagram
for this definition looks as follows:

Clock
«interface»

Radio AlarmClock
«interface» «interface»

RadioClock
«interface»

Figure 4.5. Inheritance diagram for RadioClock.

Interfaces that inherit from more than one base interface may share a common
base interface. For example, the following definition is legal:

interface B { /= ... %/ };

interface Il extends B { /* ... %/ };
interface I2 extends B { /+ ... =/ };
interface D extends I1, I2 { /+ ... x/ };

* .

This definition results in the familiar diamond shape:

B
«interface»
I1 12
«interface» «interface»
«interface»

Figure 4.6. Diamond-shaped inheritance.

124

The Slice Language

Interface Inheritance Limitations

If an interface uses multiple inheritance, it must not inherit the same operation
name from more than one base interface. For example, the following definition is
illegal:

interface Clock {

void set(TimeOfDay time); // set time
};
interface Radio {
void set(Tong hertz); // set frequency
};
interface RadioClock extends Radio, Clock { // Illegal!
// ...
};

This definition is illegal because RadioClock inherits two set operations,
Radio::set and Clock: :set. The Slice compiler makes this illegal because
(unlike C++) many programming languages do not have a built-in facility for
disambiguating the different operations. In Slice, the simple rule is that all inher-
ited operations must have unique names. (In practice, this is rarely a problem
because inheritance is rarely added to an interface hierarchy “after the fact”. To
avoid accidental clashes, we suggest that you use descriptive operation names,
such as setTime and setFrequency. This makes accidental name clashes less
likely.)

4.10 Interfaces, Operations, and Exceptions 125

Implicit Inheritance from Object

All Slice interfaces are ultimately derived from Object. For example, the inheri-
tance hierarchy from Figure 4.5 would be shown more correctly as in Figure 4.7.

Object
«interface»
Clock
«interface»
Radio AlarmClock
«interface» «interface»
RadioClock
«interface»

Figure 4.7. Implicit inheritance from Object.

Because all interfaces have a common base interface, we can pass any type of
interface as that type. For example:

interface ProxyStore {
idempotent void putProxy(string name, Object* 0);
idempotent Objects getProxy(string name);

}s

Object is a Slice keyword (note the capitalization) that denotes the root type of
the inheritance hierarchy. The ProxyStore interface is a generic proxy storage
facility: the client can call putProxy to add a proxy of any type under a given
name and later retrieve that proxy again by calling getProxy and supplying that
name. The ability to generically store proxies in this fashion allows us to build
general-purpose facilities, such as a naming service that can store proxies and
deliver them to clients. Such a service, in turn, allows us to avoid hard-coding
proxy details into clients and servers (see Chapter 38).

Inheritance from type Object is always implicit. For example, the following
Slice definition is illegal:

interface MyInterface extends Object { /* ... %/ }; // Error!

126

The Slice Language

It is understood that all interfaces inherit from type Object; you are not allowed to
restate that.

Type Object is mapped to an abstract type by the various language mappings,
S0 you cannot instantiate an Ice object of that type.

Null Proxies

Looking at the ProxyStore interface once more, we notice that getProxy does
not have an exception specification. The question then is what should happen if a
client calls getProxy with a name under which no proxy is stored? Obviously, we
could add an exception to indicate this condition to getProxy. However, another
option is to return a null proxy. Ice has the built-in notion of a null proxy, which is
a proxy that “points nowhere”. When such a proxy is returned to the client, the
client can test the value of the returned proxy to check whether it is null or denotes
a valid object.

A more interesting question is: “which approach is more appropriate, throwing
an exception or returning a null proxy?” The answer depends on the expected
usage pattern of an interface. For example, if, in normal operation, you do not
expect clients to call getProxy with a non-existent name, it is better to throw an
exception. (This is probably the case for our ProxyStore interface: the fact that
there is no 11st operation makes it clear that clients are expected to know which
names are in use.)

On the other hand, if you expect that clients will occasionally try to look up
something that is not there, it is better to return a null proxy. The reason is that
throwing an exception breaks the normal flow of control in the client and requires
special handling code. This means that you should throw exceptions only in
exceptional circumstances. For example, throwing an exception if a database
lookup returns an empty result set is wrong; it is expected and normal that a result
set is occasionally empty.

It is worth paying attention to such design issues: well-designed interfaces that
get these details right are easier to use and easier to understand. Not only do such
interfaces make life easier for client developers, they also make it less likely that
latent bugs cause problems later.

Self-Referential Interfaces

Proxies have pointer semantics, so we can define self-referential interfaces. For
example:

4.10 Interfaces, Operations, and Exceptions 127

interface Link {
idempotent SomeType getValue();
idempotent Links next();

};

The L1ink interface contains a next operation that returns a proxy to a Link inter-
face. Obviously, this can be used to create a chain of interfaces; the final link in
the chain returns a null proxy from its next operation.

Empty Interfaces
The following Slice definition is legal:

interface Empty {};

The Slice compiler will compile this definition without complaint. An interesting
question is: “why would I need an empty interface?”” In most cases, empty inter-
faces are an indication of design errors. Here is one example:

interface ThingBase {};

interface Thingl extends ThingBase {
// Operations here...

}s

interface Thing2 extends ThingBase {
// Operations here...

¥
Looking at this definition, we can make two observations:

® Thingl and Thing2 have a common base and are therefore related.

* Whatever is common to Thingl and Thing2 can be found in interface Thing-
Base.

Of course, looking at ThingBase, we find that Thingl and Thing2 do not share
any operations at all because ThingBase is empty. Given that we are using an
object-oriented paradigm, this is definitely strange: in the object-oriented model,
the only way to communicate with an object is to send a message to the object.
But, to send a message, we need an operation. Given that ThingBase has no oper-
ations, we cannot send a message to it, and it follows that Thingl and Thing2 are
not related because they have no common operations. But of course, seeing that
Thingl and Thing2 have a common base, we conclude that they are related, other-
wise the common base would not exist. At this point, most programmers begin to
scratch their head and wonder what is going on here.

128

The Slice Language

One common use of the above design is a desire to treat Thingl and Thing2
polymorphically. For example, we might continue the previous definition as
follows:

interface ThingUser {
void putThing(ThingBasex thing);
b

Now the purpose of having the common base becomes clear: we want to be able to
pass both Thingl and Thing2 proxies to putThing. Does this justify the empty
base interface? To answer this question, we need to think about what happens in
the implementation of putThing. Obviously, putThing cannot possibly invoke an
operation on a ThingBase because there are no operations. This means that
putThing can do one of two things:

1. putThing can simply remember the value of thing.

2. putThing can try to down-cast to either Thingl or Thing2 and then invoke an
operation. The pseudo-code for the implementation of putThing would look
something like this:

void putThing (ThingBase thing)

{
if (is_a(Thingl, thing)) {
// Do something with Thingl...
} else if (is_a(Thing2, thing)) {
// Do something with Thing2...
} else {
// Might be a ThingBase?
//
1
!

The implementation tries to down-cast its argument to each possible type in
turn until it has found the actual run-time type of the argument. Of course, any
object-oriented text book worth its price will tell you that this is an abuse of
inheritance and leads to maintenance problems.

If you find yourself writing operations such as putThing that rely on artificial
base interfaces, ask yourself whether you really need to do things this way. For
example, a more appropriate design might be:

interface Thingl {
// Operations here...

};

4.10 Interfaces, Operations, and Exceptions 129

interface Thing2 {
// Operations here...
};

interface ThingUser {
void putThingl(Thinglx thing);
void putThing2(Thing2x thing);
b

With this design, Thingl and Thing2 are not related, and ThingUser offers a sepa-
rate operation for each type of proxy. The implementation of these operations does
not need to use any down-casts, and all is well in our object-oriented world.

Another common use of empty base interfaces is the following:
interface PersistentObject {};

interface Thingl extends PersistentObject {
// Operations here...
b

interface Thing2 extends PersistentObject {
// Operations here...
b

Clearly, the intent of this design is to place persistence functionality into the
PersistentObject base implementation and require objects that want to have
persistent state to inherit from PersistentObject. On the face of things, this is
reasonable: after all, using inheritance in this way is a well-established design
pattern, so what can possibly be wrong with it? As it turns out, there are a number
of things that are wrong with this design:

* The above inheritance hierarchy is used to add behavior to Thingl and
Thing2. However, in a strict OO model, behavior can be invoked only by
sending messages. But, because PersistentObject has no operations, no
messages can be sent.

This raises the question of how the implementation of PersistentObject
actually goes about doing its job; presumably, it knows something about the
implementation (that is, the internal state) of Thingl and Thing2, so it can
write that state into a database. But, if so, PersistentObject, Thingl, and
Thing2 can no longer be implemented in different address spaces because, in

130

The Slice Language

that case, PersistentObject can no longer get at the state of Thingl and
Thing2.

Alternatively, Thingl and Thing2 use some functionality provided by
PersistentObject in order to make their internal state persistent. But
PersistentObject does not have any operations, so how would Thingl and
Thing2 actually go about achieving this? Again, the only way that can work is
if PersistentObject, Thingl, and Thing2 are implemented in a single
address space and share implementation state behind the scenes, meaning that
they cannot be implemented in different address spaces.

The above inheritance hierarchy splits the world into two halves, one
containing persistent objects and one containing non-persistent ones. This has
far-reaching ramifications:

* Suppose you have an existing application with already implemented, non-
persistent objects. Requirements change over time and you find that you
now would like to make some of your objects persistent. With the above
design, you cannot do this unless you change the type of your objects
because they now must inherit from PersistentObject. Of course, this is
extremely bad news: not only do you have to change the implementation of
your objects in the server, you also need to locate and update all the clients
that are currently using your objects because they suddenly have a
completely new type. What is worse, there is no way to keep things back-
ward compatible: either all clients change with the server, or none of them
do. It is impossible for some clients to remain “unupgraded”.

® The design does not scale to multiple features. Imagine that we have a
number of additional behaviors that objects can inherit, such as serializa-
tion, fault-tolerance, persistence, and the ability to be searched by a search
engine. We quickly end up in a mess of multiple inheritance. What is worse,
each possible combination of features creates a completely separate type
hierarchy. This means that you can no longer write operations that generi-
cally operate on a number of object types. For example, you cannot pass a
persistent object to something that expects a non-persistent object, even if
the receiver of the object does not care about the persistence aspects of the
object. This quickly leads to fragmented and hard-to-maintain type systems.
Before long, you will either find yourself rewriting your application or end
up with something that is both difficult to use and difficult to maintain.

The foregoing discussion will hopefully serve as a warning: Slice is an interface
definition language that has nothing to do with implementation (but empty inter-

4.11 Classes 131

4.11

faces almost always indicate that implementation state is shared via mechanisms
other than defined interfaces). If you find yourself writing an empty interface defi-
nition, at least step back and think about the problem at hand; there may be a more
appropriate design that expresses your intent more cleanly. If you do decide to go
ahead with an empty interface regardless, be aware that, almost certainly, you will
lose the ability to later change the distribution of the object model over physical
server processes because you cannot place an address space boundary between
interfaces that share hidden state.

Interface Versus Implementation Inheritance

Keep in mind that Slice interface inheritance applies only to interfaces. In partic-
ular, if two interfaces are in an inheritance relationship, this in no way implies that
the implementations of those interfaces must also inherit from each other. You can
choose to use implementation inheritance when you implement your interfaces,
but you can also make the implementations independent of each other. (To C++
programmers, this often comes as a surprise because C++ uses implementation
inheritance by default, and interface inheritance requires extra effort to imple-
ment.)

In summary, Slice inheritance simply establishes type compatibility. It says
nothing about how interfaces are implemented and, therefore, keeps implementa-
tion choices open to whatever is most appropriate for your application.

Classes

In addition to interfaces, Slice permits the definition of classes. Classes are like
interfaces in that they can have operations and are like structures in that they can
have data members. This leads to hybrid objects that can be treated as interfaces
and passed by reference, or can be treated as values and passed by value. Classes
provide much architectural flexibility. For example, classes allow behavior to be
implemented on the client side, whereas interfaces allow behavior to be imple-
mented only on the server side.

Classes support inheritance and are therefore polymorphic: at run time, you
can pass a class instance to an operation as long as the actual class type is derived
from the formal parameter type in the operation’s signature. This also permits
classes to be used as type-safe unions, similarly to Pascal’s discriminated variant
records.

132 The Slice Language
4.11.1 Simple Classes
A Slice class definition is similar to a structure definition, but uses the class
keyword. For example:
class TimeOfDay {
short hour; // 0 - 23
short minute; // @ - 59
short second; // @ - 59
s
Apart from the keyword class, this definition is identical to the structure defini-
tion we saw on page 99. You can use a Slice class wherever you can use a Slice
structure (but, as we will see shortly, for performance reasons, you should not use
a class where a structure is sufficient). Unlike structures, classes can be empty:
class EmptyClass {}; // 0K
struct EmptyStruct {}; // Error
Much the same design considerations as for empty interfaces (see page 127) apply
to empty classes: you should at least stop and rethink your approach before
committing yourself to an empty class.
You can specify a default value for a class data member that has one of the
following types:
* An integral type (bool, byte, short, int, Tong, or an enumerated type)
® float or double
® string
For example:
class Location {
string name;
Point pt;
bool display = true;
string source = "GPS";
}s
The legal syntax for literal values is the same as for Slice constants (see
Section 4.9.5). The language mapping guarantees that data members are initial-
ized to their declared default values using a language-specific mechanism.
4.11.2 Class Inheritance

Unlike structures, classes support inheritance. For example:

4.11 Classes 133

class TimeOfDay {

short hour; // 0 - 23
short minute; // @ - 59
short second; // @ - 59
};
class DateTime extends TimeOfDay {
short day; // 1 - 31
short month; // 1 - 12
short year; // 1753 onwards

}s

This example illustrates one major reason for using a class: a class can be
extended by inheritance, whereas a structure is not extensible. The previous
example defines DateTime to extend the TimeOfDay class with a date ®

Classes only support single inheritance. The following is illegal:

class TimeOfDay {

short hour; // @ - 23
short minute; // 0 - 59
short second; // @ - 59

};

class Date {
short day;
short month;
short year;

};

class DateTime extends TimeOfDay, Date { // Error!
/] ...
};

A derived class also cannot redefine a data member of its base class:

8. If you are puzzled by the comment about the year 1753, search the Web for “1752 date change”.
The intricacies of calendars for various countries prior to that year can keep you occupied for
months...

134 The Slice Language
class Base {
int integer;
};
class Derived extends Base {
int integer; // Error, integer redefined
};
4.11.3 Class Inheritance Semantics

Classes use the same pass-by-value semantics as structures. If you pass a class
instance to an operation, the class and all its members are passed. The usual type
compatibility rules apply: you can pass a derived instance where a base instance is
expected. If the receiver has static type knowledge of the actual derived run-time
type, it receives the derived instance; otherwise, if the receiver does not have static
type knowledge of the derived type, the instance is sliced to the base type. For an
example, suppose we have the following definitions:

// In file Clock.1ice:

class TimeOfDay {

short hour; // 0 - 23
short minute; // @ - 59
short second; // @ - 59

};
interface Clock {
TimeOfDay getTime();
void setTime(TimeOfDay time);
};
// In file DateTime.ice:

#include <Clock.ice>

class DateTime extends TimeOfDay {

short day; // 1 - 31
short month; // 1 - 12
short year; // 1753 onwards

};

Because DateTime is a sub-class of TimeOfDay, the server can return a DateTime
instance from getTime, and the client can pass a DateTime instance to setTime.

4.11 Classes 135

In this case, if both client and server are linked to include the code generated for
both Clock.ice and DateTime. ice, they each receive the actual derived
DateTime instance, that is, the actual run-time type of the instance is preserved.

Contrast this with the case where the server is linked to include the code
generated for both Clock.ice and DateTime. ice, but the client is linked
only with the code generated for Clock. ice. In other words, the server under-
stands the type DateTime and can return a DateTime instance from getTime, but
the client only understands TimeOfDay. In this case, the derived DateT1ime instance
returned by the server is sliced to its TimeOfDay base type in the client. (The infor-
mation in the derived part of the instance is simply lost to the client.)

Class hierarchies are useful if you need polymorphic values (instead of poly-
morphic interfaces). For example:

class Shape {
// Definitions for shapes, such as size, center, etc.

};

class Circle extends Shape {
// Definitions for circles, such as radius...

};

class Rectangle extends Shape {
// Definitions for rectangles, such as width and Tength...

};
sequence<Shape> ShapeSeq;

interface ShapeProcessor {
void processShapes(ShapeSeq ss);

};

Note the definition of ShapeSeq and its use as a parameter to the processShapes
operation: the class hierarchy allows us to pass a polymorphic sequence of shapes
(instead of having to define a separate operation for each type of shape).

The receiver of a ShapeSeq can iterate over the elements of the sequence and
down-cast each element to its actual run-time type. (The receiver can also ask each
element for its type ID to determine its type—see Section 6.14.1 and
Section 10.11.2.)

136

The Slice Language

4114

4115

Classes as Unions

Slice does not offer a dedicated union construct because it is redundant. By
deriving classes from a common base class, you can create the same effect as with
a union:

interface ShapeShifter {
Shape translate(Shape s, Tong xDistance, long yDistance);

}s

The parameter s of the translate operation can be viewed as a union of two
members: a Circle and a Rectangle. The receiver of a Shape instance can use the
type ID (see Section 4.13) of the instance to decide whether it received a Circle
or a Rectangle. Alternatively, if you want something more along the lines of a
conventional discriminated union, you can use the following approach:

class UnionDiscriminator {
int d;
b

class Memberl extends UnionDiscriminator {
// d ==
string s;
float f;

};

class Member2 extends UnionDiscriminator {
// d == 2
byte b;
int i;

};

With this approach, the UnionDiscriminator class provides a discriminator
value. The “members” of the union are the classes that are derived from Union-
Discriminator. For each derived class, the discriminator takes on a distinct
value. The receiver of such a union uses the discriminator value in a switch
statement to select the active union member.

Self-Referential Classes

Classes can be self-referential. For example:

4.11 Classes 137

class Link {
SomeType value;
Link next;

};

This looks very similar to the self-referential interface example on page 127, but
the semantics are very different. Note that value and next are data members, not
operations, and that the type of next is Link (nof Link=). As you would expect,
this forms the same linked list arrangement as the L1ink interface on page 127:
each instance of a Link class contains a next member that points at the next link
in the chain; the final link’s next member contains a null value. So, what looks
like a class including itself really expresses pointer semantics: the next data
member contains a pointer to the next link in the chain.

You may be wondering at this point what the difference is then between the
Link interface on page 127 and the Link class on page 136. The difference is that
classes have value semantics, whereas proxies have reference semantics. To illus-
trate this, consider the Link interface from page 127 once more:

interface Link {
idempotent SomeType getValue();
idempotent Links next();

};

Here, getValue and next are both operations and the return value of next is
Links=, that is, next returns a proxy. A proxy has reference semantics, that is, it
denotes an object somewhere. If you invoke the getValue operation on a Link
proxy, a message is sent to the (possibly remote) servant for that proxy. In other
words, for proxies, the object stays put in its server process and we access the state
of the object via remote procedure calls. Compare this with the definition of our
Link class:

class Link {
SomeType value;
Link next;

};

Here, value and next are data members and the type of next is Link, which has
value semantics. In particular, while next looks and feels like a pointer, it cannot
denote an instance in a different address space. This means that if we have a chain
of Link instances, all of the instances are in our local address space and, when we
read or write a value data member, we are performing local address space opera-
tions. This means that an operation that returns a Link instance, such as getHead,

138 The Slice Language

does not just return the head of the chain, but the entire chain, as shown in
Figure 4.8.

Client Server : Client Server

getHead '

Figure 4.8. Class version of L1ink before and after calling getHead.

On the other hand, for the interface version of Link, we do not know where all the
links are physically implemented. For example, a chain of four links could have
each object instance in its own physical server process; those server processes
could be each in a different continent. If you have a proxy to the head of this four-
link chain and traverse the chain by invoking the next operation on each link, you
will be sending four remote procedure calls, one to each object

Self-referential classes are particularly useful to model graphs. For example,
we can create a simple expression tree along the following lines:

enum UnaryOp { UnaryPlus, UnaryMinus, Not };
enum BinaryOp { Plus, Minus, Multiply, Divide, And, Or };

class Node {};

class UnaryOperator extends Node {
UnaryOp operator;
Node operand;

};

class BinaryOperator extends Node {
BinaryOp op;
Node operandl;
Node operand2;

};

class Operand extends Node {
Tong val;

};

4.11 Classes 139

4.11.6

The expression tree consists of leaf nodes of type Operand, and interior nodes of
type UnaryOperator and BinaryOperator, with one or two descendants, respec-
tively. All three of these classes are derived from a common base class Node. Note
that Node is an empty class. This is one of the few cases where an empty base class
is justified. (See the discussion on page 127; once we add operations to this class
hierarchy (see Section 4.11.7), the base class is no longer empty.)

If we write an operation that, for example, accepts a Node parameter, passing
that parameter results in transmission of the entire tree to the server:

interface Evaluator {
Tong eval(Node expression); // Send entire tree for evaluation

}s

Self-referential classes are not limited to acyclic graphs; the Ice run time permits
loops: it ensures that no resources are leaked and that infinite loops are avoided
during marshaling.

Classes Versus Structures

One obvious question to ask is: why does Ice provide structures as well as classes,
when classes obviously can be used to model structures? The answer has to do
with the cost of implementation: classes provide a number of features that are
absent for structures:

* Classes support inheritance.

* Classes can be self-referential.

* Classes can have operations (see Section 4.11.7).

* Classes can implement interfaces (see Section 4.11.9).

Obviously, an implementation cost is associated with the additional features of
classes, both in terms of the size of the generated code and the amount of memory
and CPU cycles consumed at run time. On the other hand, structures are simple
collections of values (“plain old structs”) and are implemented using very efficient
mechanisms. This means that, if you use structures, you can expect better perfor-
mance and smaller memory footprint than if you would use classes (especially for
languages with direct support for “plain old structures”, such as C++ and C#). Use
a class only if you need at least one of its more powerful features.

140

The Slice Language

4.11.7 Classes with Operations

Classes, in addition to data members, can have operations. The syntax for opera-
tion definitions in classes is identical to the syntax for operations in interfaces. For
example, we can modify the expression tree from Section 4.11.5 as follows:

enum UnaryOp { UnaryPlus, UnaryMinus, Not };
enum BinaryOp { Plus, Minus, Multiply, Divide, And, Or };

class Node {
idempotent long eval();

};

class UnaryOperator extends Node {
UnaryOp operator;
Node operand;

};

class BinaryOperator extends Node {
BinaryOp op;
Node operandl;
Node operand2;

};

class Operand {
long val;

}s

The only change compared to the version in Section 4.11.5 is that the Node class
now has an eval operation. The semantics of this are as for a virtual member
function in C++: each derived class inherits the operation from its base class and
can choose to override the operation’s definition. For our expression tree, the
Operand class provides an implementation that simply returns the value of its val
member, and the UnaryOperator and BinaryOperator classes provide imple-
mentations that compute the value of their respective subtrees. If we call eval on
the root node of an expression tree, it returns the value of that tree, regardless of
whether we have a complex expression or a tree that consists of only a single
Operand node.

Operations on classes are normally executed in the caller’s address space, that
is, operations on classes are local operations that do not result in a remote proce-
dure call.” Of course, this immediately raises an interesting question: what
happens if a client receives a class instance with operations from a server, but
client and server are implemented in different languages? Classes with operations

4.11 Classes 141

4.11.8

require the receiver to supply a factory for instances of the class. The Ice run time
only marshals the data members of the class. If a class has operations, the receiver
of the class must provide a class factory that can instantiate the class in the
receiver’s address space, and the receiver is responsible for providing an imple-
mentation of the class’s operations.

Therefore, if you use classes with operations, it is understood that client and
server each have access to an implementation of the class’s operations. No code is
shipped over the wire (which, in an environment of heterogeneous nodes using
different operating systems and languages is infeasible).

Architectural Implications of Classes

Classes have a number of architectural implications that are worth exploring in
some detail.

Classes without Operations

Classes that do not use inheritance and only have data members (whether self-
referential or not) pose no architectural problems: they simply are values that are
marshaled like any other value, such as a sequence, structure, or dictionary.
Classes using derivation also pose no problems: if the receiver of a derived
instance has knowledge of the derived type, it simply receives the derived type;
otherwise, the instance is sliced to the most-derived type that is understood by the
receiver. This makes class inheritance useful as a system is extended over time:
you can create derived class without having to upgrade all parts of the system at
once.

Classes with Operations

Classes with operations require additional thought. Here is an example: suppose
that you are creating an Ice application. Also assume that the Slice definitions use
quite a few classes with operations. You sell your clients and servers (both written
in Java) and end up with thousands of deployed systems.

As time passes and requirements change, you notice a demand for clients
written in C++. For commercial reasons, you would like to leave the development

9. It is possible to invoke an operation on a remote class instance—see the relevant language
mapping chapter for details.

142

The Slice Language

of C++ clients to customers or a third party but, at this point, you discover a glitch:
your application has lots of classes with operations along the following lines:

class ComplexThingForExpertsOnly {
// Lots of arcane data members here...
MysteriousThing mysteriousOperation(/* parameters =/);
ArcaneThing arcaneOperation(/+ parameters =/);
ComplexThing complexOperation(/+ parameters =/);
// etc...

}s

It does not matter what exactly these operations do. (Presumably, you decided to
off-load some of the processing for your application onto the client side for
performance reasons.) Now that you would like other developers to write C++
clients, it turns out that your application will work only if these developers
provide implementations of all the client-side operations and, moreover, if the
semantics of these operations exactly match the semantics of your Java implemen-
tations. Depending on what these operations do, providing exact semantic equiva-
lents in a different language may not be trivial, so you decide to supply the C++
implementations yourself. But now, you discover another problem: the C++
clients need to be supported for a variety of operating systems that use a variety of
different C++ compilers. Suddenly, your task has become quite daunting: you
really need to supply implementations for all the combinations of operating
systems and compiler versions that are used by clients. Given the different state of
compliance with the ISO C++ standard of the various compilers, and the idiosyn-
crasies of different operating systems, you may find yourself facing a develop-
ment task that is much larger than anticipated. And, of course, the same scenario
will arise again should you need client implementations in yet another language.

The moral of this story is not that classes with operations should be avoided;
they can provide significant performance gains and are not necessarily bad. But,
keep in mind that, once you use classes with operations, you are, in effect, using
client-side native code and, therefore, you can no longer enjoy the implementation
transparencies that are provided by interfaces. This means that classes with opera-
tions should be used only if you can tightly control the deployment environment
of clients. If not, you are better off using interfaces and classes without operations.
That way, all the processing stays on the server and the contract between client
and server is provided solely by the Slice definitions, not by the semantics of the
additional client-side code that is required for classes with operations.

4.11 Classes 143

411.9

Classes for Persistence

Ice also provides a built-in persistence mechanism that allows you to store the
state of a class in a database with very little implementation effort. To get access
to these persistence features, you must define a Slice class whose members store
the state of the class. We discuss the persistence features of Slice in detail in
Chapter 39.

Classes Implementing Interfaces

A Slice class can also be used as a servant in a server, that is, an instance of a class
can be used to provide the behavior for an interface, for example:

interface Time {
idempotent TimeOfDay getTime();
idempotent void setTime(TimeOfDay time);
};

class Clock implements Time {
TimeOfDay time;
};

The implements keyword indicates that the class Clock provides an implementa-
tion of the Time interface. The class can provide data members and operations of
its own; in the preceding example, the Clock class stores the current time that is
accessed via the Time interface. A class can implement several interfaces, for
example:

interface Time {
idempotent TimeOfDay getTime();
idempotent void setTime(TimeOfDay time);
};

interface Radio {
idempotent void setFrequency(long hertz);
idempotent void setVolume(long dB);

};

class RadioClock implements Time, Radio {
TimeOfDay time;
long hertz;

}s

The class RadioClock implements both Time and Radio interfaces.

144

The Slice Language

A class, in addition to implementing an interface, can also extend another
class:

interface Time {
idempotent TimeOfDay getTime();
idempotent void setTime(TimeOfDay time);
};

class Clock implements Time {
TimeOfDay time;
};

interface AlarmClock extends Time {
idempotent TimeOfDay getAlarmTime();
idempotent void setAlarmTime(TimeOfDay alarmTime);

}s

interface Radio {
idempotent void setFrequency(long hertz);
idempotent void setVolume(long dB);

b

class RadioAlarmClock extends Clock
implements AlarmClock, Radio {
TimeOfDay alarmTime;

Tong hertz;
}s
These definitions result in the inheritance graph shown in Figure 4.9:
Time
«interface»
Radio AlarmCTlock
. . Clock
«interface» «interface»
RadioAlarmClock

Figure 4.9. A Class using implementation and interface inheritance.

4.11 Classes 145

4.11.10

4.11.11

For this definition, Radio and AlarmClock are abstract interfaces, and Clock and
RadioAlarmClock are concrete classes. As for Java, a class can implement
multiple interfaces, but can extend at most one class.

Class Inheritance Limitations

As for interface inheritance, a class cannot redefine an operation or data member
that it inherits from a base interface or class. For example:

interface BaselInterface {
void op();
};

class BaseClass {
int member;

};
class DerivedClass extends BaseClass implements BaseInterface {
void someOperation(); // OK
int op(); // Error!
int someMember; // OK
Tong member; // Error!

};

Pass-by-Value Versus Pass-by-Reference

As we saw in Section 4.11.5, classes naturally support pass-by-value semantics:
passing a class transmits the data members of the class to the receiver. Any
changes made to these data members by the receiver affect only the receiver’s
copy of the class; the data members of the sender’s class are not affected by the
changes made by the receiver.

In addition to passing a class by value, you can pass a class by reference. For
example:

class TimeOfDay {
short hour;
short minute;
short second;
string format();

146

The Slice Language

interface Example {
TimeOfDayx get(); // Note: returns a proxy!
b

Note that the get operation returns a proxy to a TimeOfDay class and not a
TimeOfDay instance itself. The semantics of this are as follows:

® When the client receives a TimeOfDay proxy from the get call, it holds a
proxy that differs in no way from an ordinary proxy for an interface.

* The client can invoke operations via the proxy, but cannot access the data
members. This is because proxies do not have the concept of data members,
but represent interfaces: even though the TimeOfDay class has data members,
only its operations can be accessed via a the proxy.

The net effect is that, in the preceding example, the server holds an instance of the
TimeOfDay class. A proxy for that instance was passed to the client. The only
thing the client can do with this proxy is to invoke the format operation. The
implementation of that operation is provided by the server and, when the client
invokes format, it sends an RPC message to the server just as it does when it
invokes an operation on an interface. The implementation of the format operation
is entirely up to the server. (Presumably, the server will use the data members of
the TimeOfDay instance it holds to return a string containing the time to the client.)

The preceding example looks somewhat contrived for classes only. However,
it makes perfect sense if classes implement interfaces: parts of your application
can exchange class instances (and, therefore, state) by value, whereas other parts
of the system can treat these instances as remote interfaces. For example:

interface Time {
string format();
// ...

1

class TimeOfDay implements Time {
short hour;
short minute;
short second;

};

interface I1 {
TimeOfDay get(); // Pass by value
void put(TimeOfDay time); // Pass by value
};

4.11 Classes 147

4.11.12

interface I2 {
Timex get(); // Pass by reference
};

In this example, clients dealing with interface I1 are aware of the TimeOfDay class
and pass it by value whereas clients dealing with interface I2 deal only with the
Time interface. However, the actual implementation of the Time interface in the
server uses TimeOfDay instances.

Be careful when designing systems that use such mixed pass-by-value and
pass-by-reference semantics. Unless you are clear about what parts of the system
deal with the interface (pass by reference) aspects and the class (pass by value)
aspects, you can end up with something that is more confusing than helpful.

A good example of putting this feature to use can be found in Freeze (see
Chapter 39), which allows you to add classes to an existing interface to implement
persistence.

Passing Interfaces by Value
Consider the following definitions:

interface Time {
idempotent TimeOfDay getTime();

/] ...
};

interface Record {
void addTimeStamp(Time t); // Note: Time t, not Timex t
// ...

};

Note that addTimeStamp accepts a parameter of type Time, not of type Timex. The
question is, what does it mean to pass an interface by value? Obviously, at run
time, we cannot pass an an actual interface to this operation because interfaces are
abstract and cannot be instantiated. Neither can we pass a proxy to a Time object
to addTimeStamp because a proxy cannot be passed where an interface is
expected.

However, what we can pass to addTimeStamp is something that is not abstract
and derives from the Time interface. For example, at run time, we could pass an
instance of our TimeOfDay class from the previous section. Because the
TimeOfDay class derives from the Time interface, the class type is compatible with

148

The Slice Language

4.12

the formal parameter type Time and, at run time, what is sent over the wire to the
server is the TimeOfDay class instance.

Forward Declarations

Both interfaces and classes can be forward declared. Forward declarations permit
the creation of mutually dependent objects, for example:

module Family {
interface Child; // Forward declaration

sequence<Child«> Children; // OK

interface Parent {
Children getChildren(); // OK

1

interface Child { // Definition
Parentx getMother();
Parentx getFather();

1

}s

Without the forward declaration of Ch1i1d, the definition obviously could not
compile because Child and Parent are mutually dependent interfaces. You can
use forward-declared interfaces and classes to define types (such as the Children
sequence in the previous example). Forward-declared interfaces and classes are
also legal as the type of a structure, exception, or class member, as the value type
of a dictionary, and as the parameter and return type of an operation. However,
you cannot inherit from a forward-declared interface or class until after its defini-
tion has been seen by the compiler:

interface Base; // Forward declaration
interface Derivedl extends Base {}; // Error!
interface Base {}; // Definition

interface Derived2 extends Base {}; // OK, definition was seen

4.13 Type IDs 149

4.13

Not inheriting from a forward-declared base interface or class until its definition is
seen is necessary because, otherwise, the compiler could not enforce that derived

interfaces must not redefine operations that appear in base interfaces. '”

Type IDs

Each user-defined Slice type has an internal type identifier, known as its type ID.
The type ID is simply the fully-qualified name of each type. For example, the type
ID of the Chi1d interface in the preceding example is : :Family: :Chil-

dren: :Child. All type IDs for user-defined types start with a leading : :, so the
type ID of the Family module is : : Family (not Family). In general, a type ID is
formed by starting with the global scope (: :) and forming the fully-qualified
name of a type by appending each module name in which the type is nested, and
ending with the name of the type itself; the components of the type ID are sepa-
rated by ::.

The type ID of a proxy is formed by appending a = to the type ID of an inter-
face or class. For example, the type ID of a Chi1d proxy is ::Family::Chil-
dren: :Child=.

The type ID of the Slice Object type is : : Ice: :0Object and the type ID of an
Object proxy is ::Ice::0Objectx.

The type IDs for the remaining built-in types, such as int, boo1, and so on, are
the same as the corresponding keyword. For example, the type ID of int is int,
and the type ID of stringis string.

Type IDs are used internally by the Ice run time as a unique identifier for each
type. For example, when an exception is raised, the marshaled form of the excep-
tion that is returned to the client is preceded by its Type ID on the wire. The client-
side run time first reads the Type ID and, based on that, unmarshals the remainder
of the data as appropriate for the type of the exception.

Type IDs are also used by the ice_isA operation (see page 150).

10.A multi-pass compiler could be used, but the added complexity is not worth it.

150

The Slice Language

4.14 Operations on Object

The Object interface has a number of operations. We cannot define type Object
in Slice because Object is a keyword; regardless, here is what (part of) the defini-
tion of Object would look like if it were legal:

sequence<string> StrSeq;

interface Object { // "Pseudo" Slice!
idempotent void ice_ping();
idempotent bool ice_isA(string typelD);
idempotent string ice_id();
idempotent StrSeq ice_ids();
// ...
};

Note that, apart from the illegal use of the keyword Object as the interface name,
the operation names all contain the ice_ prefix. This prefix is reserved for use by
Ice and cannot clash with a user-defined operation. This means that all Slice inter-
faces can inherit from Object without name clashes. There are three built-in oper-
ations that are commonly used:

® jce_ping

All interfaces support the ice_ping operation. That operation is useful for
debugging because it provides a basic reachability test for an object: if the
object exists and a message can successfully be dispatched to the object,
ice_ping simply returns without error. If the object cannot be reached or does
not exist, ice_ping throws a run-time exception that provides the reason for
the failure.

® jce_isA

The ice_1isA operation accepts a type identifier (such as the identifier returned
by ice_id) and tests whether the target object supports the specified type,
returning true if it does. You can use this operation to check whether a target
object supports a particular type. For example, referring to Figure 4.7 once
more, assume that you are holding a proxy to a target object of type Alarm-
Clock. Table 4.2 illustrates the result of calling ice_isA on that proxy with

4.15 Local Types 151

various arguments. (We assume that all type in Figure 4.7 are defined in a
module Times):

Table 4.2. Calling ice_1isA on a proxy denoting an object of type AlarmClock.

Argument Result
::Ice::0Object true
::Times::Clock true

::Times::AlarmClock || true

::Times: :Radio false

::Times: :RadioClock || false

As expected, ice_isA returns true for : :Times: :Clock and
::Times::AlarmClock and also returns true for : :Ice: :0Object (because all
interfaces support that type). Obviously, an AlarmClock supports neither the
Radio nor the RadioClock interfaces, so ice_isA returns false for these types.

® ice_id
The ice_id operation returns the type ID (see Section 4.13) of the most-
derived type of an interface.

® ice_ids
The 1ice_ids operation returns a sequence of type IDs that contains all of the
type IDs supported by an interface. For example, for the RadioClock interface
in Figure 4.7, i ce_ids returns a sequence containing the type IDs
::Ice::0bject, : :Times: :Clock, : : Times: :AlarmClock, : : Times: :Radio,
and ::Times: :RadioClock.

4.15 Local Types

In order to access certain features of the Ice run time, you must use APIs that are
provided by libraries. However, instead of defining an API that is specific to each
implementation language, Ice defines its APIs in Slice using the Tocal keyword.
The advantage of defining APIs in Slice is that a single definition suffices to

152

The Slice Language

define the API for all possible implementation languages. The actual language-
specific API is then generated by the Slice compiler for each implementation
language. Types that are provided by Ice libraries are defined using the Slice
Tocal keyword. For example:

module Ice {
Tocal interface ObjectAdapter {
// ...
};
};

Any Slice definition (not just interfaces) can have a Tocal modifier. If the Tocal
modifier is present, the Slice compiler does not generate marshaling code for the
corresponding type. This means that a local type can never be accessed remotely
because it cannot be transmitted between client and server. (The Slice compiler
prevents use of Tocal types in non-local contexts.)

In addition, local interfaces and local classes do not inherit from
Ice::0bject. Instead, local interfaces and classes have their own, completely
separate inheritance hierarchy. At the root of this hierarchy is the type
Ice::LocalObject, as shown in Figure 4.10.

LocalObject
«interface»

T

ObjectAdapter Other local ‘m

«interface» interfaces...

Figure 4.10. Inheritance from LocalObject

Because local interfaces form a completely separate inheritance hierarchy, you
cannot pass a local interface where a non-local interface is expected and vice-
versa.

You rarely need to define local types for your own applications—the Tocal
keyword exists mainly to allow definition of APIs for the Ice run time. (Because
local objects cannot be invoked remotely, there is little point for an application to
define local objects; it might as well define ordinary programming-language
objects instead.) However, there is one exception to this rule: servant locators
must be implemented as local objects (see Section 32.7).

4.16 Names and Scoping 153

4.16

Names and Scoping

4.16.1

4.16.2

Slice has a number of rules regarding identifiers. You will typically not have to
concern yourself with these. However, occasionally, it is good to know how Slice
uses naming scopes and resolves identifiers.

Naming Scopes
The following Slice constructs establish a naming scope:
¢ the global (file) scope
* modules
* interfaces
* classes
* structures
® exceptions
® parameter lists

Within a naming scope, identifiers must be unique, that is, you cannot use the
same identifier for different purposes. For example:

interface Bad {
void op(int p, string p); // Error!
};

Because a parameter list forms a naming scope, it is illegal to use the same
identifier p for different parameters. Similarly, data members, operation names,
interface and class names, etc. must be unique within their enclosing scope.

Case Sensitivity

Identifiers that differ only in case are considered identical, so you must use identi-
fiers that differ not only in capitalization within a naming scope. For example:

struct Bad {

int m;

string M; // Error!
b

154

The Slice Language

4.16.3

The Slice compiler also enforces consistent capitalization for identifiers. Once
you have defined an identifier, you must use the same capitalization for that iden-
tifier thereafter. For example, the following is in error:

sequence<string> StringSeq;

interface Bad {
stringSeq op(); // Error!
};

Note that identifiers must not differ from a Slice keyword in case only. For
example, the following is in error:

interface Module { // Error, "module" is a keyword
// ...
};

Qualified Names

The scope-qualification operator : : allows you to refer to a type in a non-local
scope. For example:

module Types {
sequence<long> LongSeq;

};

module MyApp {
sequence<Types: :LongSeq> NumberTree;

};

Here, the qualified name Types: : LongSeq refers to LongSeq defined in module
Types. The global scope is denoted by a leading : :, so we could also refer to
LongSeq as : :Types: :LongSeq.

The scope-qualification operator also allows you to create mutually dependent
interfaces that are defined in different modules. The obvious attempt to do this
fails:

module Parents {
interface Children::Child; // Syntax error!
interface Mother {
Children::Childx getChild();
1
interface Father {
Children::Childx getChild();
1

4.16 Names and Scoping 155

4.16.4

}s

module Children {
interface Child {
Parents: :Mother= getMother();
Parents::Father= getFather();
1
};

This fails because it is syntactically illegal to forward-declare an interface in a
different module. To make it work, we must use a reopened module:

module Children {
interface Child; // Forward declaration

};

module Parents {
interface Mother {

Children::Childx getChild(); // OK
1
interface Father {
Children::Childx getChild(); // OK
1
};
module Children { // Reopen module
interface Child { // Define Child
Parents: :Mother= getMother();
Parents::Father= getFather();
1
};

While this technique works, it is probably of dubious value: mutually dependent
interfaces are, by definition, tightly coupled. On the other hand, modules are
meant to be used to place related definitions into the same module, and unrelated
definitions into different modules. Of course, this begs the question: if the inter-
faces are so closely related that they depend on each other, why are they defined in
different modules? In the interest of clarity, you probably should avoid this
construct, even though it is legal.

Names in Nested Scopes

Names defined in an enclosing scope can be redefined in an inner scope. For
example, the following is legal:

156

The Slice Language

module Outer {
sequence<string> Seq;

module Inner {
sequence<short> Seq;

b
¥
Within module Inner, the name Seq refers to a sequence of short values and
hides the definition of Outer: :Seq. You can still refer to the other definition by
using explicit scope qualification, for example:

moduTle Outer {
sequence<string> Seq;

module Inner {
sequence<short> Seq;

struct Confusing {
Seq a; // Sequence of short
::0uter::Seq b; // Sequence of string

};
};

Needless to say, you should try to avoid such redefinitions—they make it harder
for the reader to follow the meaning of a specification.

Same-named constructs cannot be nested inside each other. For example, a
module named M cannot (recursively) contain any construct also named M. The
same is true for interfaces, classes, structures, exceptions, and operations. For
example, the following examples are all in error:

module M {
interface M { /+ ... %/ }; // Error!
interface I {
void I(); // Error!
void op(string op); // Error!
1
struct S {
long s; // Error, even if case differs!
1

4.16 Names and Scoping 157

4.16.5

moduTle Outer {
module Inner {
interface Outer { // Error!
// ...
};
1
};

The reason for this restriction is that nested types that have the same name are
difficult to map into some languages. For example, C++ and Java reserve the name
of a class as the name of the constructor, so an interface I could not contain an
operation named I without artificial rules to avoid the name clash.

Similarly, some languages (such as C# prior to version 2.0) do not permit a
qualified name to be anchored at the global scope. If a nested module or type is
permitted to have the same name as the name of an enclosing module, it can
become impossible to generate legal code in some cases.

In the interest of simplicity, Slice simply prohibits the name of a nested
module or type to be the same as the name of one of its enclosing modules.

Introduced Identifiers

Within a naming scope, an identifier is introduced at the point of first use; there-
after, within that naming scope, the identifier cannot change meaning. For
example:

module M {
sequence<string> Seq;

interface Bad {
Seq opl(); // Seq and opl introduced here
int Seq(); // Error, Seq has changed meaning
1
};

The declaration of op1 uses Seq as its return type, thereby introducing Seq into the
scope of interface Bad. Thereafter, Seq can only be used as a type name that
denotes a sequence of strings, so the compiler flags the declaration of the second
operation as an error.

Note that fully-qualified identifiers are not introduced into the current scope:

158 The Slice Language

module M {
sequence<string> Seq;

interface Bad {
::M::Seq opl(); // Only opl introduced here
int Seq(); // OK
1
};

In general, a fully-qualified name (one that is anchored at the global scope and,
therefore, begins with a : : scope resolution operator) does not introduce any
name into the current scope. On the other hand, a qualified name that is not
anchored at the global scope introduces only the first component of the name:

module M {
sequence<string> Seq;

interface Bad {
M::Seq opl(); // M and opl introduced here, but not Seq
int Seq(); // 0K
1
};

4.16.6 Name Lookup Rules

When searching for the definition of a name that is not anchored at the global
scope, the compiler first searches backward in the current scope of a definition of
the name. If it can find the name in the current scope, it uses that definition. Other-
wise, the compiler successively searches enclosing scopes for the name until it
reaches the global scope. Here is an example to illustrate this:

module M1 {
sequence<double> Seq;

module M2 {
sequence<string> Seq; // OK, hides ::M1::Seq

interface Base {
Seq opl(); // Returns sequence of string

1

module M3 {
interface Derived extends M2::Base {
Seq op2(); // Returns sequence of double

4.17 Metadata 159

4.17

};
sequence<bool> Seq; // OK, hides ::Ml::Seq

interface I {
Seq op(); // Returns sequence of bool

}s
1

interface I {
Seq op(); // Returns sequence of double

};
}s

Note that M2: :Derived: : op2 returns a sequence of double, even though
M1::Base::opl returns a sequence of string. That is, the meaning of a type in a
base interface is irrelevant to determining its meaning in a derived interface—the
compiler always searches for a definition only in the current scope and enclosing
scopes, and never takes the meaning of a name from a base interface or class.

Metadata

Slice has the concept of a metadata directive. For example:

["java:type:java.util.LinkedList"] sequence<int> IntSeq;

A metadata directive can appear as a prefix to any Slice definition. Metadata
directives appear in a pair of square brackets and contain one or more string
literals separated by commas. For example, the following is a syntactically valid
metadata directives containing two strings:

["a", "b"] interface Example {};

Metadata directives are not part of the Slice language per se: the presence of a
metadata directive has no effect on the client—server contract, that is, metadata
directives do not change the Slice type system in any way. Instead, metadata direc-
tives are targeted at specific back-ends, such as the code generator for a particular
language mapping. In the preceding example, the java: prefix indicates that the
directive is targeted at the Java code generator.

Metadata directives permit you to provide supplementary information that
does not change the Slice types being defined, but somehow influences how the
compiler will generate code for these definitions. For example, a metadata direc-

160

The Slice Language

4.18

tive java:type:java.util.LinkedList instructs the Java code generator to map
a sequence to a linked list instead of an array (which is the default).

Metadata directives are also used to create proxies and skeletons that support
Asynchronous Method Invocation (AMI) and Asynchronous Method Dispatch
(AMD).

Apart from metadata directives that are attached to a specific definition, there
are also global metadata directives. For example:

[["java:package:com.acme"]]

Note that a global metadata directive is enclosed by double square brackets,
whereas a local metadata directive (one that is attached to a specific definition) is
enclosed by single square brackets. Global metadata directives are used to pass
instructions that affect the entire compilation unit. For example, the preceding
metadata directive instructs the Java code generator to generate the contents of the
source file into the Java package com. acme. Global metadata directives must
precede any definitions in a file (but can appear following any #include direc-
tives).

We discuss specific metadata directives in the relevant chapters to which they
apply.

You can find a summary of all metadata directives in Appendix B.

Serializable Objects

4.18.1

Ice for Java and Ice for .NET allow you to send native Java and CLR objects as
operation parameters. The Ice run time automatically serializes and deserializes
the objects as part of an invocation. This mechanism allows you to transmit Java
and CLR objects that do not have a corresponding Slice definition.

The serializable Metadata Directive

To enable serialization, the parameter type must be a byte sequence with appro-
priate metadata. For example:

["java:serializable:SomePackage.JavaClass"]
sequence<byte> JavaObj;

interface JavaExample {
void sendJavaObj(JavaObj o);
b

4.18 Serializable Objects 161

4.18.2

["clr:serializabTle:SomeNamespace.CLRClass"]
sequence<byte> CLRObj;

interface CLRExample {
void sendCLRObj(CLRObj 0);
};

The java:serializable metadata indicates that the corresponding byte sequence
holds a Java serializable type named SomePackage .JavaClass. Your
program must provide an implementation of this class; the class must be derived
from java.io.Serializable. (See Section 10.15 for details of the language
mapping.)

Similarly, the c1r:serializable metadata indicates that the corresponding
byte sequences holds a CLR serializable type named Some -
Namespace .CLRClass. Your program must provide an implementation of this
class; the class must be marked with the Serializable attribute. (See
Section 14.14 for the details of the language mapping.)

Architectural Implications

The serializable metadata directive permits you to transmit arbitrary Java and
CLR objects across the network without the need to define corresponding Slice
classes or structures. This is mainly a convenience feature: you could achieve the
same thing by using ordinary Slice byte sequences and explicitly serializing your
Java or CLR objects into byte sequences at the sending end, and deserializing
them at the receiving end. The serializable metadata conveniently takes care of
these chores for you and so is simpler to use.

Despite its convenience, you should use this feature with caution because it
destroys language transparency. For example, a serialized Java object is useless to
a C++ server. All the C++ server can do with such an object is to pass it on to
some other process as a byte sequence. (Of course, if that receiving process is a
Java process, it can deserialize the byte sequence.)

Further, similar to Slice classes with methods (see Section 4.11.8), a serialized
object can be deserialized only if client and server agree on the definition of the
serialized class. In Java, this is enforced by the serialVersionUID field of
each instance; in the CLR, client and server must reference identical assembly
versions. This creates much tighter coupling of client and server than exchanging
Slice-defined types.

162

The Slice Language

4.19

And, of course, if you build a system that relies on, for example, the exchange
of serialized Java objects and you later find that you need to add C++ or C#
components to the system, these components cannot do anything with the serial-
ized Java objects other than pass them around as a blob of bytes.

So, if you do use these features, be clear that this implies tighter coupling
between client and server, and that it creates additional library versioning and
distribution issues because all parts of the system must agree on the implementa-
tion of the serialized objects.

Deprecating Slice Definitions

All Slice compilers support a metadata directive that allows you to deprecate a
Slice definition. For example:

interface Example {
["deprecated:someOperation() has been deprecated, \
use alternativeOperation() instead."]
void someOperation();

void alternativeOperation();

}s

The [“deprecated”] metadata directive causes the compiler to emit code that
generates a warning if you compile application code that uses a deprecated
feature. This is useful if you want to remove a feature from a Slice definition but
do not want to cause a hard error.

The message that follows the colon is optional; if you omit the message and
use [“deprecated”], the Slice compilers insert a default message into the gener-
ated code.

You can apply the [“deprecated”] metadata directive to Slice constructs
other than operations (for example, a structure or sequence definition).

4.20 Using the Slice Compilers 163

4.20 Using the Slice Compilers

Ice provides a separate Slice compiler for each language mapping, as shown in
Table 4.3.

Table 4.3. The Slice compilers.

Language Compiler
C++ slice2cpp
Java slice2java
C# slice2cs
Python slice2py
Ruby slice2rb
Objective-C slice2objc

The compilers share a similar command-line syntax:
<compiler-name> [options] file..

Regardless of which compiler you use, a number of command-line options are
common to the compilers for any language mapping. (See the appropriate
language mapping chapter for options that are specific to a particular language
mapping.) The common command-line options are:

¢ -h, --help
Displays a help message.
® -v, --version
Displays the compiler version.
* -DNAME
Defines the preprocessor symbol NAME.
¢ -DNAME=DEF
Defines the preprocessor symbol NAME with the value DEF.

164

The Slice Language

4.21

¢ -UNAME

Undefines the preprocessor symbol NAME.
¢ -IDIR

Add the directory DIR to the search path for #include directives.
* -E

Print the preprocessor output on stdout.
® --output-dir DIR

Place the generated files into directory DIR.
®* -d, --debug

Print debug information showing the operation of the Slice parser.
* --ice

Permit use of the normally reserved prefix Ice for identifiers. Use this option
only when compiling the source code for the Ice run time.

®* --underscore
Permit use of underscores in Slice identifiers.

The Slice compilers permit you to compile more than a single source file, so you
can compile several Slice definitions at once, for example:

slice2cpp -I. filel.ice file2.ice file3.ice

Slice Checksums

As distributed applications evolve, developers and system administrators must be
careful to ensure that deployed components are using the same client—server
contract. Unfortunately, mistakes do happen, and it is not always readily apparent
when they do.

To minimize the chances of this situation, the Slice compilers support an
option that generates checksums for Slice definitions, thereby enabling two peers
to verify that they share an identical client—server contract. The checksum for a
Slice definition includes details such as parameter and member names and the
order in which operations are defined, but ignores information that is not relevant
to the client—server contract, such as metadata, comments, and formatting.

This option causes the Slice compiler to construct a dictionary that maps Slice
type identifiers to checksums. A server typically supplies an operation that returns

4.22 Generating Slice Documentation 165

4.22

its checksum dictionary for the client to compare with its local version, at which
point the client can take action if it discovers a mismatch.

The dictionary type is defined in the file Ice/S1iceChecksumDict .ice
as follows:

module Ice {
dictionary<string, string> SliceChecksumDict;

¥
This type can be incorporated into an application’s Slice definitions like this:

#include <Ice/STiceChecksumDict.ice>

interface MyServer {
idempotent Ice::STliceChecksumDict getS1iceChecksums();

/] ...
};

The key of each element in the dictionary is a Slice type ID (see Section 4.13), and
the value is the checksum of that type.

For more information on generating and using Slice checksums, see the appro-
priate language mapping chapter.

Generating Slice Documentation

If you look at the online Slice reference, you will find reference documentation for
all the Slice definitions used by Ice and its services. In the binary distributions of
Ice, you will also find HTML documentation that contains the same information.
Both the PDF and the HTML documentation are generated from special
comments in the Slice definitions by slice2html, a tool that scans Slice defini-
tions for special comments and generates HTML pages for those comments.

As an example of documentation comments, here is the definition of
Ice::Current:

/7': *

» Information about the current method invocation for servers.
+ Each operation on the server has a [Current] as its implicit
+ final parameter. [Current] is mostly used for Ice services.
+ Most applications ignore this parameter.

-:':- -.':/

http://www.zeroc.com/doc/Ice-3.4.1/reference

166 The Slice Language

Jocal struct Current {
/7': ¥*
% The object adapter.
**/
ObjectAdapter adapter;

/**
+» Information about the connection over which the current
x method invocation was received. If the invocation is direct
%# due to collocation optimization, this value is set to null.
% :‘:/

Connection con;

/**

% The Ice object identity.
**/

Identity id;

/7': *
« The facet.

***/

string facet;

ees

%« The operation name.
wy/

string operation;

/7': ¥*
* The mode of the operation.
**/

OperationMode mode;

/**
* The request context, as received from the client.
* -.':/

Context ctx;

/7': *
% The request id unless oneway (@) or collocated (-1).
**/

int requestId;

4.22 Generating Slice Documentation 167

4.22.1

If you look at the comments, you will see these reflected in the documentation for
Ice: :Current in the online Slice API Reference.

Documentation Comments

Any comment that starts with /+«x and ends with ==/ is a documentation
comment. Such a comment can precede any Slice construct, such as a module,
interface, structure, operation, and so on. Within a documentation comment, you
can either start each line with a *, or you can leave the beginning of the line
blank—slice2html can handle either convention:

VEDS

* This is a documentation comment for which every line
% starts with a '«' character.

:'cs‘:/
V&L

This is a documentation comment without a leading
for each line. Either style of comment 1is fine.

¥* 3‘:/

The first sentence of the documentation comment for a Slice construct should be a
summary sentence. slice2html generates an index of all Slice constructs; the
first sentence of the comments for each Slice construct is ued as a summary in that
index.

Hyperlinks

Any Slice identifier enclosed in square brackets is presented as a hyperlink in code
font. For example:

/:“c:‘:
* An empty [name] denotes a null object.

* :‘:/

This generates a hyperlink for the name markup that points at the definition of the
corresponding Slice symbol. (The symbol can denote any Slice construct, such as
a type, interface, parameter, or structure member.)

http://www.zeroc.com/doc/Ice-3.4.1/reference

168

The Slice Language

Explicit Cross-References

The directive @see is recognized by slice2html. Where it appears, the gener-
ated HTML contains a separate section titled “See Also”, followed by a list of
Slice identifiers. For example:

/:“c:‘:
* The object adapter, which is responsible for receiving requests
from endpoints, and for mapping between servants, identities,

% and proxies.

% @see Communicator
% @see ServantlLocator

wy/
The Slice identifiers are listed in the corresponding “See Also” section as hyper-
links in code font.
Markup for Operations

There are three directives specifically to document Slice operations: @param,
@return, and @throws. For example:

/7‘::‘:
% Look for an item with the specified
% primary and secondary key.

+ @param p The primary search key.
% @param s The secondary search key.

% @return The item that matches the specified keys.

% @throws NotFound Raised if no item matches the specified keys.

-:': -.':/

Item findItem(Key p, Key s) throws NotFound;

slice2html generates separate “Parameters”, “Return Value”, and “Excep-
tions” sections for these directives. Parameters are listed in the same order as they
appear in the comments. (For clarity, that order should match the order of declara-
tion of parameters for the corresponding operation.)

4.22 Generating Slice Documentation 169

4.22.2

General HTML Markup

A documentation comment can contain any markup that is permitted by HTML in
that place. For example, you can create separate paragraphs with <P> and </P>
elements:

VEDS

This is a comment for some Slice construct.</p>

%* <p>This comment appears in a separate paragraph.

-:': -.':/

Note that you must neither begin a documentation comment with a <p> element
nor end it with a </p> element because, in the generated HTML, documentation
comments are already surrounded by <p> and </p> elements.

There are various other ways to create markup—for example, you can use
<table> or elements. Please see the HTML specification [25] for details.

Using slice2html
slice2html uses the following syntax:
slice2html [options] slice file..

If you have cross-references that span Slice files, you must compile all of the Slice
files with a single invocation of slice2html.
The command supports the following options:

¢® -h, --help
Displays a help message.
* -v, --version
Displays the compiler version.
* -DNAME
Defines the preprocessor symbol NAME.
¢* -DNAME=DEF
Defines the preprocessor symbol NAME with the value DEF.
¢ -UNAME
Undefines the preprocessor symbol NAME.
¢ -IDIR
Add the directory DIR to the search path for #include directives.

170

The Slice Language

-E
Print the preprocessor output on stdout.
--output-dir DIR

Place the generated files into the directory DIR. (The default setting is the
current directory.)

--hdr FILE

Prepend FILE to each generated HTML file (except for sindex.html).
This allows you to replace the HTML header and other preamble information
with a custom version, so you can connect style sheets to the generated pages.
The specified file must include the <body > tag (but need not end with a
<body> tag).

FILE is expected to contain the string TITLE on a line by itself, starting in
column one. slice2html replaces the TITLE string with the fully-scoped name
of the Slice symbol that is documented on the corresponding page.

--ftr FILE

Append FILE to each generated HTML file (except for sindex.html).
This allows you to add, for example, a custom footer to each generated page.

FILEis must end with a </body> tag.
--indexhdr FILE

slice2html generates a file sindex.html that contains a table of
contents of all Slice symbols that hyperlink to the corresponding page. This
option allows you to replace the standard header with a custom header, for
example, to attach a JavaScript. The specified file must include the <body>
tag (but need not end with a <body> tag).

The default value is the setting of - -hdr (if any).
--indexftr FILE

Append FILE to the generated sindex.html page. This allows you to
add, for example, a custom footer to the table of contents, or to invoke a
JavaScript.

FILEis must end with a </body> tag.
The default value is the setting of - - £tr (if any).
--image-dir DIR

With this option, slice2html looks in the specified directory for images to
use for the generated navigation hyperlinks. (Without this option, text links

4.23 Summary

171

are used instead.) Please see the generated HTML for the names of the various
image files. (They can easily be found by looking for img elements.)
--logo-url URL

Use the specified URL as a hyperlink for the company logo that is added to
each page (if - -image-dir is specified). The company logo is expected to
be in <image-dir>/logo.gif.

--search ACTION

If this option is specified, the generated pages contain a search box that allows

you to connect the generated pages to a search engine. On pressing the
“Search” button, the specified ACTION is carrid out.

--index NUM

slice2html generates sub-indexes for various Slice symbols. This option
controls how many entries must be present before a sub-index is generated.
For example, if NUM is set to 3, a sub-index will be generated only if there are
three or more symbols that appear in that index. The default settings is 1,
meaning that a sub-index is always generated. To disable sub-indexes entirely,
set NUM to 0.

--summary NUM

If this option is set, summary sentences that exceed NUM characters generate a
warning.

-d, - -debug
Print debug information showing the operation of the Slice parser.
--ice

Permit use of the normally reserved prefix Ice for identifiers. Use this option
if your Slice definitions include Slice files for Ice or its services.

4.23 Summary

Slice is the fundamental mechanism for defining the client—server contract. By
defining data types and interfaces in Slice, you create a language-independent API
definition that are translated by a compiler into an API specific for a particular
programming language.

Slice provides the usual built-in types and allows you to create user-defined

types of arbitrary complexity, such as sequences, enumerations, structures,

172

The Slice Language

dictionaries, and classes. Polymorphism is catered for via inheritance of inter-
faces, classes, and exceptions. In turn, exceptions provide you with facilities that
permit sophisticated error reporting and handling. Modules permit you to group
related parts of a specification and prevent pollution of the global namespace, and
metadata can be used to augment Slice definitions with directives for specific
compiler backends.

slice2html permits you to integrate Slice documentation with existing
documentation tools.

Chapter 5
Slice for a Simple File System

5.1

Chapter Overview

5.2

The remainder of this book uses a file system application to illustrate various
aspects of Ice. Throughout the book, we progressively improve and modify the
application such that it evolves into an application that is realistic and illustrates
the architectural and coding aspects of Ice. This allows us to explore the capabili-
ties of the platform to a realistic degree of complexity without overwhelming you
with an inordinate amount of detail early on. Section 5.2 outlines the file system
functionality, Section 5.3 develops the data types and interfaces that are required
for the file system, and Section 5.4 presents the complete Slice definition for the
application.

The File System Application

Our file system application implements a simple hierarchical file system, similar
to the file systems we find in Windows or Unix. To keep code examples to
manageable size, we ignore many aspects of a real file system, such as ownership,
permissions, symbolic links, and a number of other features. However, we build
enough functionality to illustrate how you could implement a fully-featured file
system, and we pay attention to things such as performance and scalability. In this

173

174

Slice for a Simple File System

5.3

way, we can create an application that presents us with real-world complexity
without getting buried in large amounts of code.

Our file system consists of directories and files. Directories are containers that
can contain either directories or files, meaning that the file system is hierarchical.
A dedicated directory is at the root of the file system. Each directory and file has a
name. Files and directories with a common parent directory must have different
names (but files and directories with different parent directories can have the same
name). In other words, directories form a naming scope, and entries with a single
directory must have unique names. Directories allow you to list their contents.

For now, we do not have a concept of pathnames, or the creation and destruc-
tion of files and directories. Instead, the server provides a fixed number of directo-
ries and files. (We will address the creation and destruction of files and directories
in Chapter 34.)

Files can be read and written but, for now, reading and writing always replace
the entire contents of a file; it is impossible to read or write only parts of a file.

Slice Definitions for the File System

Given the very simple requirements we just outlined, we can start designing inter-
faces for the system. Files and directories have something in common: they have a
name and both files and directories can be contained in directories. This suggests a
design that uses a base type that provides the common functionality, and derived
types that provide the functionality specific to directories and files, as shown in
Figure 5.1.

Node
«interface»
File Directory
«interface» «interface»

Figure 5.1. Inheritance Diagram of the File System.

The Slice definitions for this look as follows:

5.3 Slice Definitions for the File System 175

interface Node {
// ...
};

interface File extends Node {
// ...
};

interface Directory extends Node {

/] ...
};

Next, we need to think about what operations should be provided by each inter-
face. Seeing that directories and files have names, we can add an operation to
obtain the name of a directory or file to the Node base interface:

interface Node {
idempotent string name();

}s

The File interface provides operations to read and write a file. For simplicity, we
limit ourselves to text files and we assume that read operations never fail and that
only write operations can encounter error conditions. This leads to the following
definitions:

exception GenericError {
string reason;

};
sequence<string> Lines;

interface File extends Node {
idempotent Lines read();
idempotent void write (Lines text) throws GenericError;

};

Note that read and write are marked idempotent because either operation can
safely be invoked with the same parameter value twice in a row: the net result of
doing so is the same has having (successfully) called the operation only once.

The write operation can raise an exception of type GenericError. The excep-
tion contains a single reason data member, of type string. If a write operation
fails for some reason (such as running out of file system space), the operation
throws a GenericError exception, with an explanation of the cause of the failure
provided in the reason data member.

176

Slice for a Simple File System

54

Directories provide an operation to list their contents. Because directories can
contain both directories and files, we take advantage of the polymorphism
provided by the Node base interface:

sequence<Nodex> NodeSeq;

interface Directory extends Node {
idempotent NodeSeq 1ist();
};

The NodeSeq sequence contains elements of type Nodex. Because Node is a base
interface of both Directory and File, the NodeSeq sequence can contain proxies
of either type. (Obviously, the receiver of a NodeSeq must down-cast each element
to either File or Directory in order to get at the operations provided by the
derived interfaces; only the name operation in the Node base interface can be
invoked directly, without doing a down-cast first. Note that, because the elements
of NodeSeq are of type Node= (not Node), we are using pass-by-reference seman-
tics: the values returned by the 1ist operation are proxies that each point to a
remote node on the server.

These definitions are sufficient to build a simple (but functional) file system.
Obviously, there are still some unanswered questions, such as how a client obtains
the proxy for the root directory. We will address these questions in the relevant
implementation chapter.

The Complete Definition

We wrap our definitions in a module, resulting in the final definition as follows:

module Filesystem {
interface Node {
idempotent string name();

1

exception GenericError {
string reason;

s
sequence<string> Lines;
interface File extends Node {

idempotent Lines read();
idempotent void write(Lines text) throws GenericError;

5.4 The Complete Definition 177

};
sequence<Nodex> NodeSeq;

interface Directory extends Node {
idempotent NodeSeq Tist();
1
};

Part 11

C++ Mapping

Chapter 6
Client-Side Slice-to-C++ Mapping

6.1

Chapter Overview

6.2

In this chapter, we present the client-side Slice-to-C++ mapping (see Chapter 8
for the server-side mapping). One part of the client-side C++ mapping concerns
itself with rules for representing each Slice data type as a corresponding C++
type; we cover these rules in Section 6.3 to Section 6.10. Another part of the
mapping deals with how clients can invoke operations, pass and receive parame-
ters, and handle exceptions. These topics are covered in Section 6.11 to

Section 6.13. Slice classes have the characteristics of both data types and inter-
faces and are covered in Section 6.14. Section 6.15 presents asynchronous method
invocations and, finally, Sections 6.16 and 6.17 show you how to use the Slice
compiler and Slice checksums.

Introduction

The client-side Slice-to-C++ mapping defines how Slice data types are translated
to C++ types, and how clients invoke operations, pass parameters, and handle
errors. Much of the C++ mapping is intuitive. For example, Slice sequences map
to STL vectors, so there is essentially nothing new you have to learn in order to
use Slice sequences in C++.

181

182

Client-Side Slice-to-C++ Mapping

6.3

The rules that make up the C++ mapping are simple and regular. In particular,
the mapping is free from the potential pitfalls of memory management: all types
are self-managed and automatically clean up when instances go out of scope. This
means that you cannot accidentally introduce a memory leak by, for example,
ignoring the return value of an operation invocation or forgetting to deallocate
memory that was allocated by a called operation.

The C++ mapping is fully thread-safe. For example, the reference counting
mechanism for classes (see Section 6.14.6) is interlocked against parallel access,
so reference counts cannot be corrupted if a class instance is shared among a
number of threads. Obviously, you must still synchronize access to data from
different threads. For example, if you have two threads sharing a sequence, you
cannot safely have one thread insert into the sequence while another thread is iter-
ating over the sequence. However, you only need to concern yourself with concur-
rent access to your own data—the Ice run time itself is fully thread safe, and none
of the Ice API calls require you to acquire or release a lock before you safely can
make the call.

Much of what appears in this chapter is reference material. We suggest that
you skim the material on the initial reading and refer back to specific sections as
needed. However, we recommend that you read at least Section 6.9 to
Section 6.13 in detail because these sections cover how to call operations from a
client, pass parameters, and handle exceptions.

A word of advice before you start: in order to use the C++ mapping, you
should need no more than the Slice definition of your application and knowledge
of the C++ mapping rules. In particular, looking through the generated header files
in order to discern how to use the C++ mapping is likely to be confusing because
the header files are not necessarily meant for human consumption and, occasion-
ally, contain various cryptic constructs to deal with operating system and compiler
idiosyncrasies. Of course, occasionally, you may want to refer to a header file to
confirm a detail of the mapping, but we recommend that you otherwise use the
material presented here to see how to write your client-side code.

Mapping for Identifiers

Slice identifiers map to an identical C++ identifier. For example, the Slice identi-
fier Clock becomes the C++ identifier C1ock. There is one exception to this rule:
if a Slice identifier is the same as a C++ keyword, the corresponding C++ identi-

6.4 Mapping for Modules 183

6.4

fier is prefixed with _cpp . For example, the Slice identifier whiTe is mapped as
_cpp_whil el

A single Slice identifier often results in several C++ identifiers. For example,
for a Slice interface named Foo, the generated C++ code uses the identifiers Foo
and FooPrx (among others). If the interface has the name wh1ile, the generated
identifiers are _cpp while and whilePrx (not _cpp whilePrx), thatis,
the prefix is applied only to those generated identifiers that actually require it.

Mapping for Modules

Slice modules map to C++ namespaces. The mapping preserves the nesting of the
Slice definitions. For example:

module M1 {
module M2 {
// ...
1
// ...
};
// ...
module M1 { // Reopen M1
// ...
};

This definition maps to the corresponding C++ definition:
namespace M1 {
namespace M2 {

VA
}
/]

VA

1. As suggested in Section 4.5.3 on page 92, you should try to avoid such identifiers as much as
possible.

184

Client-Side Slice-to-C++ Mapping

6.5

namespace M1 { // Reopen M1

/..
}

If a Slice module is reopened, the corresponding C++ namespace is reopened as
well.

The Ice Namespace

6.6

All of the APIs for the Ice run time are nested in the I ce namespace, to avoid
clashes with definitions for other libraries or applications. Some of the contents of
the Tce namespace are generated from Slice definitions; other parts of the Tce
namespace provide special-purpose definitions that do not have a corresponding
Slice definition. We will incrementally cover the contents of the Tce namespace
throughout the remainder of the book.

Mapping for Simple Built-In Types

The Slice built-in types are mapped to C++ types as shown in Table 6.1.

Table 6.1. Mapping of Slice built-in types to C++.

Slice C++
bool bool
byte Ice: :Byte

short Ice: :Short

int Ice::Int

Tong Ice::Long

float Ice::Float

double || Ice: :Double

6.6 Mapping for Simple Built-In Types 185

6.6.1

Table 6.1. Mapping of Slice built-in types to C++.

Slice C++

string || std::string

Slice bool and string map to C++ bool and std: : string. The remaining
built-in Slice types map to C++ type definitions instead of C++ native types. This
allows the Ice run time to provide a definition as appropriate for each target archi-
tecture. (For example, Ice: : Int might be defined as 1ong on one architecture
and as int on another.)

Note that Ice: : Byte is a typedef for unsigned char. This guarantees
that byte values are always in the range 0..255.

All the basic types are guaranteed to be distinct C++ types, that is, you can
safely overload functions that differ in only the types in Table 6.1.

Alternate String Mapping

You can use a metadata directive, ["cpp:type:wstring"], to map strings to C++
std: :wstring. This is useful for applications that use languages with alpha-
bets that cannot be represented in 8-bit characters. The metadata directive can be
applied to any Slice construct. For containers (such as modules, interfaces, or
structures), the metadata directive applies to all strings within the container. A
corresponding metadata directive, ["cpp:type:string"] can be used to selec-
tively override the mapping defined by the enclosing container. For example:

["cpp:type:wstring"]

struct S1 {
string x; // Maps to std::wstring
["cpp:type:wstring"]
string y; // Maps to std::wstring
["cpp:type:string"]
string z; // Maps to std::string
};
struct S2 {
string Xx; // Maps to std::string

["cpp:type:string"]

186 Client-Side Slice-to-C++ Mapping
string y; // Maps to std::string
["cpp:type:wstring"]
string z; // Maps to std::wstring

3
With these metadata directives, the strings are mapped as indicated by the
comments. By default, narrow strings are encoded as UTF-8, and wide strings use
Unicode in an encoding that is appropriate for the platform on which the applica-
tion executes. You can override the encoding for narrow and wide strings by regis-
tering a string converter with the Ice run time. (See Section 32.24 for details.)
6.7 Mapping for User-Defined Types

Slice supports user-defined types: enumerations, structures, sequences, and
dictionaries.

6.7.1 Mapping for Enumerations
Enumerations map to the corresponding enumeration in C++. For example:
enum Fruit { Apple, Pear, Orange };
Not surprisingly, the generated C++ definition is identical:
enum Fruit { Apple, Pear, Orange };

6.7.2 Mapping for Structures

The mapping for structures maps Slice structures to C++ structures by default. In
addition, you can use a metadata directive to map structures to classes (see
page 189).

Default Mapping for Structures

Slice structures map to C++ structures with the same name. For each Slice data
member, the C++ structure contains a public data member. For example, here is
our Employee structure from Section 4.9.4 once more:

6.7 Mapping for User-Defined Types 187

struct Employee {
Tong number;
string firstName;
string lastName;

¥
The Slice-to-C++ compiler generates the following definition for this structure:

struct Employee {

Ice: :Long number;

std::string firstName;

std::string lastName;

bool operator==(const Employee&) const;
bool operator!=(const Employee&) const;
bool operator< (const Employee&) const;
bool operator<=(const Employee&) const;
bool operators>(const Employee&) const;
bool operator>=(const Employee&) const;

}i
For each data member in the Slice definition, the C++ structure contains a corre-
sponding public data member of the same name. Constructors are intentionally
omitted so that the C++ structure qualifies as a plain old datatype (POD).

Note that the structure also contains comparison operators. These operators
have the following behavior:

®* operator==
Two structures are equal if (recursively), all its members are equal.
® operator!=

Two structures are not equal if (recursively), one or more of its members are
not equal.

® operatorx<
operator<=
operator>
operators>=

The comparison operators treat the members of a structure as sort order
criteria: the first member is considered the first criterion, the second member
the second criterion, and so on. Assuming that we have two Employee struc-
tures, s1 and s2, this means that the generated code uses the following algo-
rithm to compare s1 and s2:

bool Employee: :operator< (const Employee& rhs) const

{

188

Client-Side Slice-to-C++ Mapping

if (this == &rhs) // Short-cut self-comparison
return false;

// Compare first members

//

if (number < rhs.number)
return true;

else if (rhs.number < number)
return false;

// First members are equal, compare second members

//

if (firstName < rhs.firstName)
return true;

else if (rhs.firstName < firstName)
return false;

// Second members are equal, compare third members

//

if (lastName < rhs.lastName)
return true;

else if (rhs.lastName < lastName)
return false;

// Bll members are equal, so return false
return false;

The comparison operators are provided to allow the use of structures as the key
type of Slice dictionaries, which are mapped to std: :map in C++ (see
Section 6.7.5).

Note that copy construction and assignment always have deep-copy semantics.
You can freely assign structures or structure members to each other without
having to worry about memory management. The following code fragment illus-
trates both comparison and deep-copy semantics:

Employee el, e2;

el.firstName = "Bjarne";

el.lastName = "Stroustrup";

e2 = el; // Deep copy
assert (el == e2);

e2.firstName = "Andrew"; // Deep copy
e2.lastName = "Koenig"; // Deep copy

assert (e2 < el);

6.7 Mapping for User-Defined Types 189

Because strings are mapped to std: : string, there are no memory manage-
ment issues in this code and structure assignment and copying work as expected.
(The default member-wise copy constructor and assignment operator generated by
the C++ compiler do the right thing.)

Class Mapping for Structures

Occasionally, the mapping of Slice structures to C++ structures can be inefficient.
For example, you may need to pass structures around in your application, but want
to avoid having to make expensive copies of the structures. (This overhead
becomes noticeable for structures with many complex data members, such as
sequences or strings.) Of course, you could pass the structures by const reference,
but that can create its own share of problems, such as tracking the life time of the
structures to avoid ending up with dangling references.

For this reason, you can enable an alternate mapping that maps Slice struc-
tures to C++ classes. Classes (as opposed to structures) are reference-counted.
Because the Ice C++ mapping provides smart pointers for classes (see
Section 6.14.6), you can keep references to a class instance in many places in the
code without having to worry about either expensive copying or life time issues.

The alternate mapping is enabled by a metadata directive, ["cpp:class"].
Here is our Employee structure once again, but this time with the additional meta-
data directive:

["cpp:class"] struct Employee {
Tong number;
string firstName;
string lastName;

s
Here is the generated class:

class Employee : public IceUtil::Shared ({
public:
Employee () {}
Employee (::Ice: :Long,
const ::std::string&,
const ::std::stringé&) ;
::Ice::Long number;
::std::string firstName;
::std::string lastName;

bool operator==(const Employeeé&) const;
bool operator!=(const Employee&) const;
bool operator< (const Employee&) const;

190

Client-Side Slice-to-C++ Mapping

bool operator<=(const Employee&) const;
bool operators(const Employee&) const;
bool operators>=(const Employee&) const;

i

Note that the generated class, apart from a default constructor, has a constructor
that accepts one argument for each member of the structure. This allows you to
instantiate and initialize the class in a single statement (instead of having to first
instantiate the class and then assign to its members).

As for the default structure mapping, the class contains one public data
member for each data member of the corresponding Slice structure.

The comparison operators behave as for the default structure mapping.

For details on how to instantiate classes, and how to access them via smart
pointers, please Section 6.14—the class mapping described there applies equally
to Slice structures that are mapped to classes.

Constructors

Structures have an implicit default constructor that default-constructs each data
member. Members having a complex type, such as strings, sequences, and diction-
aries, are initialized by their own default constructor. However, the default
constructor performs no initialization for members having one of the simple
built-in types boolean, integer, floating point, or enumeration. For such a member,
it is not safe to assume that the member has a reasonable default value. This is
especially true for enumerated types as the member’s default value may be outside
the legal range for the enumeration, in which case an exception will occur during
marshaling unless the member is explicitly set to a legal value.

If you wish to ensure that data members of primitive types are initialized to
reasonable values, you can declare default values in your Slice definition (see
Section 4.9.2). The default constructor initializes each of these data members to
its declared value.

The Slice compiler also generates a second constructor for structures that use
the class mapping, and for structures having at least one member with a default
value. This one-shot constructor has one parameter for each data member,
allowing you to construct and initialize an instance in a single statement (instead
of first having to construct the instance and then assigning to its members).

6.7 Mapping for User-Defined Types 191

6.7.3

6.7.4

Mapping for Sequences

Here is the definition of our FruitPlatter sequence from Section 4.9.3 once
more:

sequence<Fruit> FruitPlatter;

The Slice compiler generates the following C++ definition for the FruitPlatter
sequence:

typedef std::vector<Fruits> FruitPlatter;

As you can see, the sequence simply maps to an STL vector. As a result, you can
use the sequence like any other STL vector, for example:

// Make a small platter with one Apple and one Orange

//

FruitPlatter p;
p.push back (Apple) ;
p.push back (Orange) ;

As you would expect, you can use all the usual STL iterators and algorithms with
this vector.

Custom Sequence Mapping

In addition to the default mapping of sequences to vectors, Ice supports three addi-
tional custom mappings for sequences.

STL Container Mapping for Sequences

You can override the default mapping of Slice sequences to C++ vectors with a
metadata directive, for example:

[["cpp:include:Tist"]]
module Food {
enum Fruit { Apple, Pear, Orange };

["cpp:type:std::Tist< ::Food::Fruit>"]
sequence<Fruit> FruitPlatter;

};

With this metadata directive, the sequence now maps to a C++ std: :list:

192

Client-Side Slice-to-C++ Mapping

#include <lists>
namespace Food

typedef std::list< Food::Fruit> FruitPlatter;

//
}

The cpp : type metadata directive must be applied to a sequence definition;
anything following the cpp: type: prefix is taken to be the name of the type. For
example, we could use ["cpp:type:::std::Tlist< ::Food::Fruit>"]. In that
case, the compiler would use a fully-qualified name to define the type:

typedef ::std::list< ::Food::Fruit> FruitPlatter;

Note that the code generator inserts whatever string you specify following the
cpp:type: prefix literally into the generated code. This means that, to avoid C++
compilation failures due to unknown symbols, you should use a qualified name
for the type.

Also note that, to avoid compilation errors in the generated code, you must
instruct the compiler to generate an appropriate include directive with the
cpp:include global metadata directive. This causes the compiler to add the line

#include <list>

to the generated header file.

Instead of std: : 1ist, you can specify a type of your own as the sequence
type, for example:

[["cpp:include:FruitBowl.h"]]
module Food {
enum Fruit { Apple, Pear, Orange };

["cpp:type:FruitBowl"]
sequence<Fruit> FruitPlatter;

}s

With these metadata directives, the compiler will use a C++ type FruitBowl as
the sequence type, and add an include directive for the header file FruitBowl.h
to the generated code.

6.7 Mapping for User-Defined Types 193

You can use any class of your choice as a sequence type, but the class must
meet certain requirements. (vector, 1ist, and deque happen to meet these
requirements.)

* The class must have a default constructor and a single-argument constructor
that takes the size of the sequence as an argument of unsigned integral type.

The class must have a copy constructor.

The class must provide a member function s1ize that returns the number
elements in the sequence as an unsigned integral type.

The class must provide a member function swap that swaps the contents of
the sequence with another sequence of the same type.

The class must define iterator and const iterator types and must
provide begin and end member functions with the usual semantics; the iter-
ators must be comparable for equality and inequality.

Less formally, this means that if the class looks like a vector, 1ist, or deque
with respect to these points, you can use it as a custom sequence implementation.

In addition to modifying the type of a sequence itself, you can also modify the
mapping for particular return values or parameters (see Section 6.12). For
example:

[["cpp:include:Tist"]]
[["cpp:include:deque"]]

module Food {
enum Fruit { Apple, Pear, Orange };
sequence<Fruit> FruitPlatter;

interface Market {
["cpp:type:1list< ::Food::Fruit>"]
FruitPlatter
barter(
["cpp:type:deque< ::Food::Fruit>"] FruitPlatter offer
);
};

};

With this definition, the default mapping of FruitPlatter to a C++ vector still
applies but the return value of barter is mapped as a 1ist, and the of fer param-
eter is mapped as a deque.

194

Client-Side Slice-to-C++ Mapping

Array Mapping for Sequences

The array mapping for sequences applies to input parameters (see Section 6.12)
and to out parameters of AMI (see Section 6.15) and AMD (see Section 8.8) oper-
ations . For example:

interface File {
void write(["cpp:array"] Ice::ByteSeq contents);

};

The cpp:array metadata directive instructs the compiler to map the contents
parameter to a pair of pointers. With this directive, the write method on the
proxy has the following signature:

void write(const std::pair<const Ice::Byte*,
const Ice::Byte*>& contents);

To pass a byte sequence to the server, you pass a pair of pointers; the first pointer
points at the beginning of the sequence, and the second point points one element
past the end of the sequence.

Similarly, for the server side, the write method on the skeleton has the
following signature:

virtual void write(const ::std::pair<const ::Ice::Byte¥*,
const ::Ice::Byte*>&,
const ::Ice::Current& = ::Ice::Current()) = 0;

The passed pointers denote the beginning and end of the sequence as a range
[first, last) (thatis, they use the usual STL semantics for iterators).

The array mapping is useful to achieve zero-copy passing of sequences. The
pointers point directly into the server-side transport buffer; this allows the server-
side run time to avoid creating a vector to pass to the operation implementation,
thereby avoiding both allocating memory for the sequence and copying its
contents into that memory.

Note that you can use the array mapping for any sequence type. However, it
provides a performance advantage only for byte sequences (on all platforms) and
for sequences of integral or floating point types (x86 platforms only).

Also note that the called operation in the server must not store a pointer into
the passed sequence because the transport buffer into which the pointer points is
deallocated as soon as the operation completes.

Range Mapping for Sequences

The range mapping for sequences is similar to the array mapping and exists for the
same purpose, namely, to enable zero-copy of sequence parameters:

6.7 Mapping for User-Defined Types 195

interface File {
void write(["cpp:range"] Ice::ByteSeq contents);

};

The cpp: range metadata directive instructs the compiler to map the contents
parameter to a pair of const_iterator. With this directive, the write
method on the proxy has the following signature:

void write (const std::pair<Ice::ByteSeq::const_ iterator,
Ice::ByteSeq::const iterator>& contents

)i

Similarly, for the server side, the write method on the skeleton has the following
signature:

virtual void write(const ::std::pair<
::Ice::ByteSeq::const iterator,
::Ice: :ByteSeq::const_iterators>g,
const ::Ice::Current& = ::Ice::Current()) = 0;

The passed iterators denote the beginning and end of the sequence as a range
[first, last) (thatis, they use the usual STL semantics for iterators).

The motivation for the range mapping is the same as for the array mapping:
the passed iterators point directly into the server-side transport buffer and so avoid
the need to create a temporary vectoxr to pass to the operation.

As for the array mapping, the range mapping can be used with any sequence
type, but offers a performance advantage only for byte sequences (on all plat-
forms) and for sequences of integral type (x86 platforms only).

The operation must not store an iterator into the passed sequence because the
transport buffer into which the iterator points is deallocated as soon as the opera-
tion completes.

You can optionally add a type name to the cpp: range metadata directive, for
example:

interface File {
void write(
["cpp:range:std::deque<Ice: :Byte>"]
Ice::ByteSeq contents);
b

This instructs the compiler to generate a pair of const_iterator for the spec-
ified type:

196

Client-Side Slice-to-C++ Mapping

6.7.5

6.8

virtual void write(const ::std::pair<
std::deque<Ice::Byte>::const iterator,
std::deque<Ice: :Byte>::const iteratorsé&,
const ::Ice::Current& = ::Ice::Current()) = 0;

This is useful if you want to combine the range mapping with a custom sequence
type that behaves like an STL container.

Mapping for Dictionaries

Here is the definition of our EmployeeMap from Section 4.9.4 once more:
dictionary<long, Employee> EmployeeMap;

The following code is generated for this definition:

typedef std::map<Ice::Long, Employee> EmployeeMap;

Again, there are no surprises here: a Slice dictionary simply maps to an STL map.
As aresult, you can use the dictionary like any other STL map, for example:

EmployeeMap em;
Employee e;

e.number = 42;

e.firstName = "Stan";
e.lastName = "Lippman";
em[e.number] = e;
e.number = 77;
e.firstName = "Herb";
e.lastName = "Sutter";
em[e.number] = e;

Obviously, all the usual STL iterators and algorithms work with this map just as
well as with any other STL container.

Mapping for Constants

Slice constant definitions map to corresponding C++ constant definitions. Here
are the constant definitions we saw in Section 4.9.5 on page 103 once more:

6.9 Mapping for Exceptions 197

6.9

const bool AppendByDefault = true;
const byte LowerNibble = 0x0f;
const string Advice = "Don't Panic!";
const short TheAnswer = 42;

const double PI = 3.1416;

enum Fruit { Apple, Pear, Orange };
const Fruit FavoriteFruit = Pear;

Here are the generated definitions for these constants:

const bool AppendByDefault = true;

const Ice::Byte LowerNibble = 15;

const std::string Advice = "Don't Panic!";
const Ice::Short TheAnswer = 42 ;

const Ice::Double PI = 3.1416;

enum Fruit { Apple, Pear, Orange };
const Fruit FavoriteFruit = Pear;

All constants are initialized directly in the header file, so they are compile-time
constants and can be used in contexts where a compile-time constant expression is
required, such as to dimension an array or as the case label of a switch state-
ment.

Mapping for Exceptions

Here is a fragment of the Slice definition for our world time server from
Section 4.10.5 on page 120 once more:

exception GenericError {
string reason;
};
exception BadTimeVal extends GenericError {};
exception BadZoneName extends GenericError {};

These exception definitions map as follows:

class GenericError: public Ice::UserException {
public:
std::string reason;

GenericError () {}
explicit GenericError (const stringé&) ;

198

Client-Side Slice-to-C++ Mapping

virtual const std::string& ice name() const;
virtual Ice::Exception* ice clone() const;
virtual void ice throw() const;

// Other member functions here...

}i

class BadTimeVal: public GenericError {
public:

BadTimeval () {}

explicit BadTimeVal (const string&) ;

virtual const std::string& ice name() const;
virtual Ice::Exception* ice clone() const;
virtual void ice throw() const;
// Other member functions here...

}i

class BadZoneName: public GenericError {

public:
BadZoneName () {}
explicit BadZoneName (const stringé&) ;
virtual const std::string& ice name() const;
virtual Ice::Exception* ice clone() const;
virtual void ice_throw() const;

i

Each Slice exception is mapped to a C++ class with the same name. For each
exception member, the corresponding class contains a public data member. (Obvi-
ously, because BadTimeVal and BadZoneName do not have members, the generated
classes for these exceptions also do not have members.)
The inheritance structure of the Slice exceptions is preserved for the generated
classes, so BadTimeVal and BadZoneName inherit from GenericError.
Each exception has three additional member functions:
®* ice name
As the name suggests, this member function returns the name of the exception.
For example, if you call the ice name member function of a BadZone-
Name exception, it (not surprisingly) returns the string "BadZoneName".
The ice name member function is useful if you catch exceptions generi-
cally and want to produce a more meaningful diagnostic, for example:

try {
//

} catch (const Ice::GenericErrors e)

6.9 Mapping for Exceptions 199

cerr << "Caught an exception: " << e.ice name() << endl;

}

If an exception is raised, this code prints the name of the actual exception
(BadTimeVal or BadZoneName) because the exception is being caught by
reference (to avoid slicing).

®* ice clone

This member function allows you to polymorphically clone an exception. For
example:

try {
//
} catch (const Ice::UserException& e) {
Ice: :UserException* copy = e.clone();
}

ice clone is useful if you need to make a copy of an exception without
knowing its precise run-time type. This allows you to remember the exception
and throw it later by calling ice throw.

®* ice_throw
ice throw allows you to throw an exception without knowing its precise
run-time type. It is implemented as:

void
GenericError::ice throw() const

{
}

You can call ice throw to throw an exception that you previously cloned
with ice clone.

throw *this;

Each exception has a default constructor. This constructor performs memberwise
initialization; for simple built-in types, such as integers, the constructor performs
no initialization, whereas complex types, such as strings, sequences, and diction-
aries are initialized by their respective default constructors.

An exception also has a second constructor that accepts one argument for each
exception member. This constructor allows you to instantiate and initialize an
exception in a single statement, instead of having to first instantiate the exception
and then assign to its members. For derived exceptions, the constructor accepts
one argument for each base exception member, plus one argument for each
derived exception member, in base-to-derived order.

200

Client-Side Slice-to-C++ Mapping

Note that the generated exception classes contain other member functions that
are not shown on page 197. However, those member functions are internal to the
C++ mapping and are not meant to be called by application code.

All user exceptions ultimately inherit from Ice: : UserException. In
turn, Ice: : UserException inherits from Ice: : Exception (which is an
alias for TceUtil: :Exception):

namespace IceUtil {
class Exception {

virtual const std::string& ice name() const;

Exception* ice_clone() const;

void ice throw() const;

virtual void ice print(std::ostream&) const;
!/

std: :ostream& operator<<(std::ostream&, const Exceptioné) ;
//

namespace Ice {
typedef IceUtil::Exception Exception;

class UserException: public Exception {

public:
virtual const std::string& ice name() const = 0;
//

}

Ice: :Exception forms the root of the exception inheritance tree. Apart from
the usual ice name, ice clone, and ice throw member functions, it
contains the ice_print member functions. ice_print prints the name of the
exception. For example, calling ice print onaBadTimeVal exception
prints:

BadTimeVal

To make printing more convenient, operator<< is overloaded for
Ice: :Exception, so you can also write:

try {
//

} catch (const Ice::Exception& e) {
cerr << e << endl;

}

6.10 Mapping for Run-Time Exceptions 201

6.10

This produces the same output because operator<< calls ice print inter-
nally.

For Ice run time exceptions, ice_print also shows the file name and line
number at which the exception was thrown.

Constructors

Exceptions have a default constructor that default-constructs each data member.
Members having a complex type, such as strings, sequences, and dictionaries, are
initialized by their own default constructor. However, the default constructor
performs no initialization for members having one of the simple built-in types
boolean, integer, floating point, or enumeration. For such a member, it is not safe
to assume that the member has a reasonable default value. This is especially true
for enumerated types as the member’s default value may be outside the legal range
for the enumeration, in which case an exception will occur during marshaling
unless the member is explicitly set to a legal value.

If you wish to ensure that data members of primitive types are initialized to
reasonable values, you can declare default values in your Slice definition (see
Section 4.10.2). The default constructor initializes each of these data members to
its declared value.

Exceptions also have a second constructor that has one parameter for each
data member. This allows you to construct and initialize a class instance in a
single statement (instead of first having to construct the instance and then
assigning to its members). For derived exceptions, this constructor has one param-
eter for each of the base class’s data members, plus one parameter for each of the
derived class’s data members, in base-to-derived order.

Mapping for Run-Time Exceptions

The Ice run time throws run-time exceptions for a number of pre-defined error
conditions. All run-time exceptions directly or indirectly derive from
Ice: :LocalException (which, in turn, derives from Ice: : Exception).
Ice: :LocalException has the usual member functions (ice name,
ice_clone, ice_throw, and (inherited from Ice: : Exception),
ice print,ice file,and ice_line).

An inheritance diagram for user and run-time exceptions appears in Figure 4.4
on page 117. By catching exceptions at the appropriate point in the hierarchy, you
can handle exceptions according to the category of error they indicate:

202 Client-Side Slice-to-C++ Mapping
® Tce: :Exception

This is the root of the complete inheritance tree. Catching Ice: : Excep-

tion catches both user and run-time exceptions.

® Tce: :UserException

This is the root exception for all user exceptions. Catching Ice: : UserEx-

ception catches all user exceptions (but not run-time exceptions).

® Ice::LocalException

This is the root exception for all run-time exceptions. Catching

Ice: :LocalException catches all run-time exceptions (but not user

exceptions).

® Tce::TimeoutException
This is the base exception for both operation-invocation and connection-estab-
lishment timeouts.

® Tce::ConnectTimeoutException

This exception is raised when the initial attempt to establish a connection to a

server times out.

For example, a ConnectTimeout Exception can be handled as Connect -
TimeoutException, TimeoutException, LocalException, or
Exception.

You will probably have little need to catch run-time exceptions as their most-
derived type and instead catch them as LocalException; the fine-grained
error handling offered by the remainder of the hierarchy is of interest mainly in
the implementation of the Ice run time. An exception to this rule are FacetNo-
tExistException (see Chapter 33) and ObjectNotExistException
(see Chapter 34), which you may want to catch explicitly.

6.11 Mapping for Interfaces

The mapping of Slice interfaces revolves around the idea that, to invoke a remote
operation, you call a member function on a local class instance that represents the
remote object. This makes the mapping easy and intuitive to use because, for all
intents and purposes (apart from error semantics), making a remote procedure call
is no different from making a local procedure call.

6.11 Mapping for Interfaces 203

6.11.1

Proxy Classes and Proxy Handles

On the client side, interfaces map to classes with member functions that corre-
spond to the operations on those interfaces. Consider the following simple inter-
face:

module M {
interface Simple {
void op();
1
1

The Slice compiler generates the following definitions for use by the client:

namespace IceProxy {
namespace M {
class Simple;

}

namespace M {
class Simple;
typedef IceInternal::ProxyHandle< ::IceProxy::M::Simple>
SimplePrx;
typedef IceInternal::Handle< ::M::Simple> SimplePtr;

}

namespace IceProxy {
namespace M {
class Simple : public virtual IceProxy::Ice::0Object ({
public:
typedef ::M::SimplePrx ProxyType;
typedef ::M::SimplePtr PointerType;

void op () ;
void op (const Ice::Contexté&) ;

!/

As you can see, the compiler generates a proxy class Simple in the
IceProxy: :M namespace, as well as a proxy handle M: : SimplePrx. In
general, for a module M, the generated names are : : IceProxy: :M: : <inter-
face-name>and : :M: : <interface-name>Prx.

204

Client-Side Slice-to-C++ Mapping

In the client’s address space, an instance of IceProxy: :M: : Simple is the
local ambassador for a remote instance of the Simp1e interface in a server and is
known as a proxy class instance. All the details about the server-side object, such
as its address, what protocol to use, and its object identity are encapsulated in that
instance.

Note that Simple inherits from IceProxy: : Ice: :Object. This reflects
the fact that all Ice interfaces implicitly inherit from Ice: :0bject. For each oper-
ation in the interface, the proxy class has two overloaded member functions of the
same name. For the preceding example, we find that the operation op has been
mapped to two member functions op.

One of the overloaded member functions has a trailing parameter of type
Ice: :Context. This parameter is for use by the Ice run time to store informa-
tion about how to deliver a request; normally, you do not need to supply a value
here and can pretend that the trailing parameter does not exist. (We examine the
Ice: :Context parameter in detail in Chapter 32. The parameter is also used by
IceStorm—see Chapter 44.)

Client-side application code never manipulates proxy class instances directly.
In fact, you are not allowed to instantiate a proxy class directly. The following
code will not compile because Ice: : Object is an abstract base class with a
protected constructor and destructor:

IceProxy: :M::Simple s; // Compile-time error!

Proxy instances are always instantiated on behalf of the client by the Ice run time,
so client code never has any need to instantiate a proxy directly. When the client
receives a proxy from the run time, it is given a proxy handle to the proxy, of type
<interface-name>Prx (SimplePrx for the preceding example). The
client accesses the proxy via its proxy handle; the handle takes care of forwarding
operation invocations to its underlying proxy, as well as reference-counting the
proxy. This means that no memory-management issues can arise: deallocation of a
proxy is automatic and happens once the last handle to the proxy disappears (goes
out of scope).

Because the application code always uses proxy handles and never touches the
proxy class directly, we usually use the term proxy to denote both proxy handle
and proxy class. This reflects the fact that, in actual use, the proxy handle looks
and feels like the underlying proxy class instance. If the distinction is important,
we use the terms proxy class, proxy class instance, and proxy handle.

Also note that the generated proxy class contains type definitions for Proxy -
Type and PointerType. These are provided so you can refer to the proxy type

6.11 Mapping for Interfaces 205

6.11.2

and smart pointer type (see Section 6.14.6) in template definitions without having
to resort to preprocessor trickery, for example:

template<typename T>
class ProxyWrapper {

public:
T: :ProxyType proxy () const;
//

}i

Methods on Proxy Handles

As we saw for the preceding example, the handle is actually a template of type
IceInternal: : ProxyHandle that takes the proxy class as the template
parameter. This template has the usual constructor, copy constructor, and assign-
ment operator:

® Default constructor

You can default-construct a proxy handle. The default constructor creates a
proxy that points nowhere (that is, points at no object at all.) If you invoke an
operation on such a null proxy, you get an
IceUtil::NullHandleException:

try {
SimplePrx s; // Default-constructed proxy
s->o0p () ; // Call via nil proxy
assert (0) ; // Can't get here

} catch (const IceUtil::NullHandleException&) {
cout << "As expected, got a NullHandleException" << endl;
}

* Copy constructor

The copy constructor ensures that you can construct a proxy handle from
another proxy handle. Internally, this increments a reference count on the
proxy; the destructor decrements the reference count again and, once the count
drops to zero, deallocates the underlying proxy class instance. That way,
memory leaks are avoided:

{ // Enter new scope
SimplePrx sl = ...; // Get a proxy from somewhere
SimplePrx s2(sl); // Copy-construct s2
assert (sl == s2); // Assertion passes

} // Leave scope; sl, s2, and the

// underlying proxy instance

206

Client-Side Slice-to-C++ Mapping

// are deallocated

Note the assertion in this example: proxy handles support comparison (see
Section 6.11.4).

Assignment operator

You can freely assign proxy handles to each other. The handle implementation
ensures that the appropriate memory-management activities take place. Self-
assignment is safe and you do not have to guard against it:

SimplePrx sl = ...; // Get a proxy from somewhere
SimplePrx s2; // s2 is nil

s2 = sl; // both point at the same object
sl = 0; // sl is nil

s2 = 0; // s2 is nil

Widening assignments work implicitly. For example, if we have two inter-
faces, Base and Derived, we can widen a DerivedPrx to a BasePrx
implicitly:

BasePrx base;

DerivedPrx derived;

base = derived; // Fine, no problem
derived = base; // Compile-time error

Implicit narrowing conversions result in a compile error, so the usual C++
semantics are preserved: you can always assign a derived type to a base type,
but not vice versa.

Checked cast
Proxy handles provide a checkedCast method:

namespace IcelInternal ({
template<typename T>
class ProxyHandle : public IceUtil::HandleBase<T> {
public:
template<class Y>
static ProxyHandle checkedCast (const ProxyHandle<Y>& r);

template<class Y>

static ProxyHandle checkedCast (const ProxyHandle<Y>& r,
const ::Ice::Context& c);

//

6.11 Mapping for Interfaces 207

}

A checked cast has the same function for proxies as a C++ dynamic cast
has for pointers: it allows you to assign a base proxy to a derived proxy. If the
base proxy’s actual run-time type is compatible with the derived proxy’s static
type, the assignment succeeds and, after the assignment, the derived proxy
denotes the same object as the base proxy. Otherwise, if the base proxy’s run-
time type is incompatible with the derived proxy’s static type, the derived
proxy is set to null. Here is an example to illustrate this:

BasePrx base = ...; // Initialize base proxy
DerivedPrx derived;
derived = DerivedPrx::checkedCast (base) ;
if (derived) {
// Base has run-time type Derived,
// use derived...
} else {
// Base has some other, unrelated type
1

The expression DerivedPrx: : checkedCast (base) tests whether
base points at an object of type Derived (or an object with a type that is
derived from Derived). If so, the cast succeeds and derived is set to point at
the same object as base. Otherwise, the cast fails and derived is set to the
null proxy.

Note that checkedCast is a static member function so, to do a down-cast,
you always use the syntax <interface-name>Prx: :checkedCast.

Also note that you can use proxies in boolean contexts. For example,
if (proxy) returns true if the proxy is not null (see Section 6.11.4).

A checkedCast typically results in a remote message to the server.” The
message effectively asks the server “is the object denoted by this reference of
type Derived?” The reply from the server is communicated to the application
code in form of a successful (non-null) or unsuccessful (null) result. Sending a
remote message is necessary because, as a rule, there is no way for the client
to find out what the actual run-time type of a proxy is without confirmation
from the server. (For example, the server may replace the implementation of

2. In some cases, the Ice run time can optimize the cast and avoid sending a message. However, the
optimization applies only in narrowly-defined circumstances, so you cannot rely on a
checkedCast not sending a message.

208

Client-Side Slice-to-C++ Mapping

the object for an existing proxy with a more derived one.) This means that you
have to be prepared for a checkedCast to fail. For example, if the server is
not running, you will receive a ConnectFailedException,; if the server
is running, but the object denoted by the proxy no longer exists, you will
receive an ObjectNotExistException.

Unchecked cast

In some cases, it is known that an object supports a more derived interface
than the static type of its proxy. For such cases, you can use an unchecked
down-cast:

namespace IceInternal {
template<typename T>
class ProxyHandle : public IceUtil::HandleBase<T> {
public:
template<class Y>
static ProxyHandle uncheckedCast (const ProxyHandle<Y>& 1) ;
//
}i
}

An uncheckedCast provides a down-cast without consulting the server as
to the actual run-time type of the object, for example:

BasePrx base = ...; // Initialize to point at a Derived
DerivedPrx derived;

derived = DerivedPrx::uncheckedCast (base) ;

// Use derived...

You should use an uncheckedCast only if you are certain that the proxy
indeed supports the more derived type: an uncheckedCast, as the name
implies, is not checked in any way; it does not contact the object in the server
and, if it fails, it does not return null. (An unchecked cast is implemented
internally like a C++ static_cast, no checks of any kind are made). If you
use the proxy resulting from an incorrect uncheckedCast to invoke an
operation, the behavior is undefined. Most likely, you will receive an Opera -
tionNotExistException, but, depending on the circumstances, the Ice
run time may also report an exception indicating that unmarshaling has failed,
or even silently return garbage results.

Despite its dangers, uncheckedCast is still useful because it avoids the
cost of sending a message to the server. And, particularly during initialization
(see Chapter 7), it is common to receive a proxy of static type

6.11 Mapping for Interfaces 209

6.11.3

Ice: :0bject, but with a known run-time type. In such cases, an
uncheckedCast saves the overhead of sending a remote message.

* Stream insertion and stringification
For convenience, proxy handles also support insertion of a proxy into a
stream, for example:

Ice::0bjectPrx p = ...;
cout << p << endl;

This code is equivalent to writing:

Ice::0ObjectPrx p = ...;
cout << p->ice toString() << endl;

Either code prints the stringified proxy (see Appendix E). You could also
achieve the same thing by writing:

Ice::0ObjectPrx p = ...;
cout << communicator-sproxyToString(p) << endl;

The advantage of using the ice toString member function instead of
proxyToString is that you do not need to have the communicator avail-
able at the point of call.

Using Proxy Methods

The base proxy class Object Prx supports a variety of methods for customizing
a proxy (see Section 32.11). Since proxies are immutable, each of these “factory

methods” returns a copy of the original proxy that contains the desired modifica-
tion. For example, you can obtain a proxy configured with a ten second timeout as
shown below:

Ice::0bjectPrx proxy = communicator-s>stringToProxy(...);
proxy = proxy->ice timeout (10000) ;

A factory method returns a new proxy object if the requested modification differs
from the current proxy, otherwise it returns the current proxy. With few excep-
tions, factory methods return a proxy of the same type as the current proxy, there-
fore it is generally not necessary to repeat a down-cast after using a factory
method. The example below demonstrates these semantics:

Ice::0bjectPrx base = communicator-sstringToProxy(...);
HelloPrx hello = HelloPrx::checkedCast (base) ;

hello = hello->ice timeout (10000); # Type is preserved
hello->sayHello() ;

210 Client-Side Slice-to-C++ Mapping
The only exceptions are the factory methods ice facet and ice_identity.
Calls to either of these methods may produce a proxy for an object of an unrelated
type, therefore they return a base proxy that you must subsequently down-cast to
an appropriate type.
6.11.4 Obiject Identity and Proxy Comparison

Apart from the methods discussed in Section 6.11.2, proxy handles also support
comparison. Specifically, the following operators are supported:

® operator==
operator!=

These operators permit you to compare proxies for equality and inequality. To
test whether a proxy is null, use a comparison with the literal 0, for example:
if (proxy == 0)

// It's a nil proxy
else

// It's a non-nil proxy

® operator<
operator<=
operator>
operator>=

Proxies support comparison. This allows you to place proxies into STL
containers such as maps or sorted lists.

* Boolean comparison

Proxies have a conversion operator to bool. The operator returns true if a
proxy is not null, and false otherwise. This allows you to write:

BasePrx base = ...;
if (base)

// It's a non-nil proxy
else

// It's a nil proxy

Note that proxy comparison uses all of the information in a proxy for the compar-
ison. This means that not only the object identity must match for a comparison to
succeed, but other details inside the proxy, such as the protocol and endpoint
information, must be the same. In other words, comparison with == and ! = tests
for proxy identity, not object identity. A common mistake is to write code along
the following lines:

6.11 Mapping for Interfaces 211

Ice::0bjectPrx pl .. // Get a proxy...
Ice::0bjectPrx p2 R // Get another proxy...

if (pl !'= p2) {

// pl and p2 denote different objects // WRONG!
} else {
// pl and p2 denote the same object // Correct

}

Even though p1 and p2 differ, they may denote the same Ice object. This can
happen because, for example, both p1 and p2 embed the same object identity, but
each use a different protocol to contact the target object. Similarly, the protocols
may be the same, but denote different endpoints (because a single Ice object can
be contacted via several different transport endpoints). In other words, if two
proxies compare equal with ==, we know that the two proxies denote the same
object (because they are identical in all respects); however, if two proxies compare
unequal with ==, we know absolutely nothing: the proxies may or may not denote
the same object.

To compare the object identities of two proxies, you can use helper functions
in the Ice namespace:

namespace Ice

bool proxyIdentityLess (const ObjectPrxé&,

const ObjectPrxé&) ;
bool proxyIdentityEqual (const ObjectPrx&,

const ObjectPrxé&) ;
bool proxyIdentityAndFacetLess (const ObjectPrx&,
const ObjectPrxé&) ;
bool proxyIdentityAndFacetEqual (const ObjectPrxé&,
const ObjectPrx&) ;

}

The proxyIdentityEqual function returns true if the object identities
embedded in two proxies are the same and ignores other information in the
proxies, such as facet and transport information. To include the facet name (see
Chapter 33) in the comparison, use proxyIdentityAndFacetEqual
instead.

The proxyIdentityLess function establishes a total ordering on proxies.
It is provided mainly so you can use object identity comparison with STL sorted
containers. (The function uses name as the major ordering criterion, and cate-
gory as the minor ordering criterion.) The proxyIdentityAndFacetLess

212

Client-Side Slice-to-C++ Mapping

6.12

function behaves similarly to proxyIdentityLess, except that it also
compares the facet names of the proxies when their identities are equal.

proxyIdentityEqual and proxyIdentityAndFacetLess allow
you to correctly compare proxies for object identity. The example below demon-
strates how to use proxyIdentityEqual:

Ice::0bjectPrx pl = ...; // Get a proxy...
Ice: :0bjectPrx p2 e // Get another proxy...

if (!Ice::proxyIdentityEqual (pl, p2) {

// pl and p2 denote different objects // Correct
} else {

// pl and p2 denote the same object // Correct
}

Mapping for Operations

As we saw in Section 6.11, for each operation on an interface, the proxy class
contains a corresponding member function with the same name. To invoke an
operation, you call it via the proxy handle. For example, here is part of the defini-
tions for our file system from Section 5.4:

module Filesystem {
interface Node {
idempotent string name();

// ...
};

The proxy class for the Node interface, tidied up to remove irrelevant detail, is as
follows:

namespace IceProxy {
namespace Filesystem {
class Node : virtual public IceProxy::Ice::0Object {
public:
std: :string name () ;
//
}i

typedef IcelInternal::ProxyHandle<Node> NodePrx;

6.12 Mapping for Operations 213

6.12.1

!/

}
//
}

The name operation returns a value of type string. Given a proxy to an object
of type Node, the client can invoke the operation as follows:

NodePrx node = ...; // Initialize proxy
string name = node-s>name () ; // Get name via RPC

The proxy handle overloads operator-> to forward method calls to the under-
lying proxy class instance which, in turn, sends the operation invocation to the
server, waits until the operation is complete, and then unmarshals the return value
and returns it to the caller.

Because the return value is of type string, it is safe to ignore the return
value. For example, the following code contains no memory leak:

NodePrx node = ...; // Initialize proxy
node->name () ; // Useless, but no leak

This is true for all mapped Slice types: you can safely ignore the return value of an
operation, no matter what its type—return values are always returned by value. If
you ignore the return value, no memory leak occurs because the destructor of the
returned value takes care of deallocating memory as needed.

Normal and idempotent Operations

You can add an idempotent qualifier to a Slice operation. As far as the signature
for the corresponding proxy methods is concerned, idempotent has no effect. For
example, consider the following interface:

interface Example {
string opl();
idempotent string op2();
idempotent void op3(string s);

3
The proxy class for this interface looks like this:

namespace IceProxy {
class Example : virtual public IceProxy::Ice::0bject ({
public:
std::string opl () ;
std::string op2() ; // idempotent

214

Client-Side Slice-to-C++ Mapping

6.12.2

void op3(const std::stringé&) ; // idempotent
/...
i
}
Because idempotent affects an aspect of call dispatch, not interface, it makes
sense for the mapping to be unaffected by the idempotent keyword.

Passing Parameters

In-Parameters

The parameter passing rules for the C++ mapping are very simple: parameters are
passed either by value (for small values) or by const reference (for values that
are larger than a machine word). Semantically, the two ways of passing parame-
ters are identical: it is guaranteed that the value of a parameter will not be changed
by the invocation (with some caveats—see page 217 and page 1093).

Here is an interface with operations that pass parameters of various types from
client to server:

struct NumberAndString {
int x;
string str;

b
sequence<string> StringSeq;
dictionary<long, StringSeqg> StringTable;

interface ClientToServer {
void opl(int i, float f, bool b, string s);
void op2(NumberAndString ns, StringSeq ss, StringTable st);
void op3(ClientToServer:= proxy);

3
The Slice compiler generates the following code for this definition:

struct NumberAndString {
Ice::Int x;
std::string str;
/] ...

}i

typedef std::vector<std::strings> StringSeq;

6.12 Mapping for Operations 215

typedef std::map<Ice::Long, StringSeqg> StringTable;

namespace IceProxy {
class ClientToServer : virtual public IceProxy::Ice::Object {
public:
void opl (Ice::Int, Ice::Float, bool, const std::stringé&) ;
void op2 (const NumberAndStringé&,
const StringSeqg,
const StringTable&) ;
void op3 (const ClientToServerPrx&) ;
//
}i

Given a proxy to a ClientToServer interface, the client code can pass parameters
as in the following example:

ClientToServerPrx p = ...; // Get proxy...
p->opl (42, 3.14, true, "Hello world!"); // Pass simple literals
int i 42;

float £ = 3.14;

bool b = true;

string s = "Hello world!";

p->opl(i, £, b, s); // Pass simple variables

NumberAndString ns = { 42, "The Answer" };
StringSeq ss;

ss.push back ("Hello world!") ;

StringTable st;

st [0] = ss;
p->op2(ns, ss, st); // Pass complex variables
p->o0p3(p); // Pass proxy

You can pass either literals or variables to the various operations. Because every-
thing is passed by value or const reference, there are no memory-management
issues to consider.

Out-Parameters

The C++ mapping passes out-parameters by reference. Here is the Slice definition
from page 214 once more, modified to pass all parameters in the out direction:

216

Client-Side Slice-to-C++ Mapping

struct NumberAndString {
int x;
string str;

s
sequence<string> StringSeq;
dictionary<long, StringSeqg> StringTable;

interface ServerToClient {
void opl(out int i, out float f, out bool b, out string s);
void op2(out NumberAndString ns,
out StringSeq ss,
out StringTable st);
void op3(out ServerToClients proxy);

3
The Slice compiler generates the following code for this definition:

namespace IceProxy {
class ServerToClient : virtual public IceProxy::Ice::Object ({
public:
void opl (Ice::Int&, Ice::Float&, bool&, std::string&);
void op2 (NumberAndString&, StringSeq&, StringTable&) ;
void op3 (ServerToClientPrx&) ;
!/
}i
}

Given a proxy to a ServerToClient interface, the client code can pass parameters
as in the following example:

ServerToClientPrx p = ...; // Get proxy...

int 1i;
float f;
bool b;
string s;

p->opl(i, £, b, s);
// i, £, b, and s contain updated values now

NumberAndString ns;
StringSeq ss;
StringTable st;

p->o0p2(ns, ss, st);

6.12 Mapping for Operations 217

// ns, ss, and st contain updated values now

p->op3 (p) ;
// p has changed now!
Again, there are no surprises in this code: the caller simply passes variables to an
operation; once the operation completes, the values of those variables will be set
by the server.

It is worth having another look at the final call:

p->0p3(p) ; // Weird, but well-defined

Here, p is the proxy that is used to dispatch the call. That same variable p is also
passed as an out-parameter to the call, meaning that the server will set its value. In
general, passing the same parameter as both an input and output parameter is safe:
the Ice run time will correctly handle all locking and memory-management activi-
ties.

Another, somewhat pathological example is the following:

sequence<int> Row;
sequence<Row> Matrix;

interface MatrixArithmetic {
void multiply(Matrix ml,
Matrix m2,

out Matrix result);

};

Given a proxy to a MatrixArithmetic interface, the client code could do the
following:

MatrixArithmeticPrx ma = ...; // Get proxy...

Matrix ml = ...; // Initialize one matrix
Matrix m2 = ...; // Initialize second matrix
ma->squareAndCubeRoot (m1, m2, ml); // !!!

This code is technically legal, in the sense that no memory corruption or locking
issues will arise, but it has surprising behavior: because the same variable m1 is
passed as an input parameter as well as an output parameter, the final value of m1
is indeterminate—in particular, if client and server are collocated in the same
address space, the implementation of the operation will overwrite parts of the
input matrix m1 in the process of computing the result because the result is written
to the same physical memory location as one of the inputs. In general, you should
take care when passing the same variable as both an input and output parameter
and only do so if the called operation guarantees to be well-behaved in this case.

218

Client-Side Slice-to-C++ Mapping

6.13

Chained Invocations

Consider the following simple interface containing two operations, one to set a
value and one to get it:
interface Name {

string getName();

void setName(string name);

};

Suppose we have two proxies to interfaces of type Name, p1 and p2, and chain
invocations as follows:

p2->setName (pl->getName ()) ;

This works exactly as intended: the value returned by p1 is transferred to p2.
There are no memory-management or exception safety issues with this code.

Exception Handling

Any operation invocation may throw a run-time exception (see Section 6.10 on
page 201) and, if the operation has an exception specification, may also throw

user exceptions (see Section 6.9 on page 197). Suppose we have the following

simple interface:

exception Tantrum {
string reason;

};

interface Child {
void askToCleanUp() throws Tantrum;

};

Slice exceptions are thrown as C++ exceptions, so you can simply enclose one or
more operation invocations in a t ry—catch block:

ChildPrx child = ...; // Get proxy...
try {

child->askToCleanUp () ; // Give it a try...
} catch (const Tantrum& t) {

cout << "The child says: " << t.reason << endl;

}

6.13 Exception Handling 219

Typically, you will catch only a few exceptions of specific interest around an oper-
ation invocation; other exceptions, such as unexpected run-time errors, will typi-
cally be dealt with by exception handlers higher in the hierarchy. For example:

void run ()

{

ChildPrx child = ...; // Get proxy...

try {
child->askToCleanUp(); // Give it a try...

} catch (const Tantrum& t) {
cout << "The child says: " << t.reason << endl;

child->scold() ; // Recover from error...

}

child->praise() ; // Give positive feedback...

}

int
main (int argc, char* argvl[])

{

int status = 1;

try {
//

run() ;

//

status = 0;
} catch (const Ice::Exception& e)

cerr << "Unexpected run-time error: " << e << endl;
}

//

return status;

}

This code handles a specific exception of local interest at the point of call and
deals with other exceptions generically. (This is also the strategy we used for our
first simple application in Chapter 3.)

For efficiency reasons, you should always catch exceptions by const refer-
ence. This permits the compiler to avoid calling the exception’s copy constructor
(and, of course, prevents the exception from being sliced to a base type).

Exceptions and Out-Parameters

The Ice run time makes no guarantees about the state of out-parameters when an
operation throws an exception: the parameter may have still have its original value
or may have been changed by the operation’s implementation in the target object.

220

Client-Side Slice-to-C++ Mapping

6.14

In other words, for out-parameters, Ice provides the weak exception
guarantee [21] but does not provide the strong exception guarantee.3

Exceptions and Return Values

For return values, C++ provides the guarantee that a variable receiving the return
value of an operation will not be overwritten if an exception is thrown. (Of course,
this guarantee holds only if you do not use the same variable as both an out-
parameter and to receive the return value of an invocation (see page 217).)

Mapping for Classes

Slice classes are mapped to C++ classes with the same name. The generated class
contains a public data member for each Slice data member, and a virtual member
function for each operation. Consider the following class definition:

class TimeOfDay {

short hour; // @ - 23
short minute; // @ - 59
short second; // @ - 59
string format(); // Return time as hh:mm:ss

¥
The Slice compiler generates the following code for this definition:*

class TimeOfDay;

typedef IcelInternal::ProxyHandle<IceProxy: :TimeOfDay> TimeOfDayPrx

typedef IceInternal::Handle<TimeOfDay> TimeOfDayPtr;

class TimeOfDay : virtual public Ice::Object ({
public:

Ice: :Short hour;

Ice: :Short minute;

Ice: :Short second;

3. This is done for reasons of efficiency: providing the strong exception guarantee would require
more overhead than can be justified.

4. The ProxyType and PointerType definitions are for template programming (see
page 204).

6.14 Mapping for Classes 221

}i

virtual std::string format () = 0;

TimeOfDay () {};
TimeOfDay (Ice: :Short, Ice::Short, Ice::Short);

virtual bool ice isA(const std::string&);

virtual const std::string& ice_ id();
static const std::string& ice staticId() ;

typedef TimeOfDayPrx ProxyType;
typedef TimeOfDayPtr PointerType;

!/

There are a number of things to note about the generated code:

1. The generated class TimeOfDay inherits from Ice: : Object. This means

that all classes implicitly inherit from Ice: :Object, which is the ultimate
ancestor of all classes. Note that Ice: : Object is not the same as
IceProxy: :Ice: :0bject. In other words, you cannot pass a class where
a proxy is expected and vice versa. (However, you can pass a proxy for the
class—see Section 6.14.6.)

. The generated class contains a public member for each Slice data member.

. The generated class has a constructor that takes one argument for each data

member, as well as a default constructor.

. The generated class contains a pure virtual member function for each Slice

operation.

. The generated class contains additional member functions: ice isA,

ice id,ice staticId,and ice factory.

. The compiler generates a type definition TimeOfDayPtr. This type imple-

ments a smart pointer that wraps dynamically-allocated instances of the class.
In general, the name of this type is <class-name>Ptr. Do not confuse this
with <class-name>Prx—that type exists as well, but is the proxy handle
for the class, not a smart pointer.

There is quite a bit to discuss here, so we will look at each item in turn.

222

Client-Side Slice-to-C++ Mapping

6.14.1

Inheritance from Ice: :0bject

Like interfaces, classes implicitly inherit from a common base class,

Ice: :0bject. However, as shown in Figure 6.1, classes inherit from

Ice: :0bject instead of Ice: : ObjectPrx (which is at the base of the inher-
itance hierarchy for proxies). As a result, you cannot pass a class where a proxy is
expected (and vice versa) because the base types for classes and proxies are not

compatible.

‘ Ice::0bjectPrx

| Ice::0Object ‘

Proxies...

’_’—’_‘ ‘ Classes... "’_’_‘
T
I
I

Figure 6.1. Inheritance from Ice: :ObjectPrx and Ice: :Object.

Ice: :0bject contains a number of member functions:

namespace Ice {

class Object

public:
virtual

virtual
virtual

virtual

public virtual IceInternal::GCShared

bool ice isA(const std::stringg,

const Current& = Current()) const;
void ice ping(const Current& = Current()) const;
std::vector<std::string> ice ids(

const Current& = Current()) const;
const std::string& ice id(

const Current& = Current()) const;

static const std::string& ice_staticId() ;

virtual
virtual

virtual
virtual

virtual

virtual
virtual

Ice::Int ice getHash() const;
ObjectPtr ice clone() const;

void ice preMarshal () ;
void ice postUnmarshal () ;

DispatchStatus ice dispatch(
Ice: :Requestg,
const DispatchInterceptorAsyncCallbackPtr& = 0);

bool operator==(const Objecté&) const;
bool operator!=(const Object&) const;

6.14 Mapping for Classes 223

virtual bool operator<(const Objecté&) const;
virtual bool operator<=(const Object&) const;
virtual bool operators(const Objecté&) const;
virtual bool operator>=(const Objecté&) const;

}i
}

The member functions of Ice: : Object behave as follows:
® ice isA

This function returns true if the object supports the given type ID, and
false otherwise.

®* ice ping
As for interfaces, ice ping provides a basic reachability test for the class.
®* ice ids

This function returns a string sequence representing all of the type IDs
supported by this object, including : : Ice: :Object.

* ice id
This function returns the actual run-time type ID for a class. If you call

ice_id through a smart pointer to a base instance, the returned type id is the
actual (possibly more derived) type ID of the instance.

®* ice staticId
This function returns the static type ID of a class.
®* ice getHash

This method returns a hash value for the class, allowing you to easily place
classes into hash tables.

® ice clone
This function makes a polymorphic shallow copy of a class (see page 236).
®* ice preMarshal

The Ice run time invokes this function prior to marshaling the object’s state,
providing the opportunity for a subclass to validate its declared data members.

®* ice_postUnmarshal

The Ice run time invokes this function after unmarshaling an object’s state. A
subclass typically overrides this function when it needs to perform additional
initialization using the values of its declared data members.

224

Client-Side Slice-to-C++ Mapping

6.14.2

®* ice dispatch

This function dispatches an incoming request to a servant. It is used in the
implementation of dispatch interceptors (see Section 32.23).

® operator==
operator!=
operatorx<
operator<=
operators>
operators>=

The comparison operators permit you to use classes as elements of STL sorted
containers. Note that sort order, unlike for structures (see Section 6.12), is
based on the memory address of the class, not on the contents of its data
members of the class.

Data Members of Classes

By default, data members of classes are mapped exactly as for structures and
exceptions: for each data member in the Slice definition, the generated class
contains a corresponding public data member.

If you wish to restrict access to a data member, you can modify its visibility
using the protected metadata directive. The presence of this directive causes the
Slice compiler to generate the data member with protected visibility. As a result,
the member can be accessed only by the class itself or by one of its subclasses. For
example, the TimeOfDay class shown below has the protected metadata directive
applied to each of its data members:

class TimeOfDay {
["protected"] short hour; // @ - 23
["protected"] short minute; // @0 - 59
["protected"] short second; // @0 - 59
string format(); // Return time as hh:mm:ss

¥
The Slice compiler produces the following generated code for this definition:

class TimeOfDay : virtual public Ice::0Object ({
public:

virtual std::string format () = 0;

//

6.14 Mapping for Classes 225

6.14.3

protected:

Ice::Short hour;
Ice: :Short minute;
Ice: :Short second;

}i

For a class in which all of the data members are protected, the metadata directive
can be applied to the class itself rather than to each member individually. For
example, we can rewrite the TimeOfDay class as follows:

["protected"] class TimeOfDay {

short hour; // 0 - 23
short minute; // @ - 59
short second; // @ - 59
string format(); // Return time as hh:mm:ss

}s

Class Constructors

Classes have a default constructor that default-constructs each data member.
Members having a complex type, such as strings, sequences, and dictionaries, are
initialized by their own default constructor. However, the default constructor
performs no initialization for members having one of the simple built-in types
boolean, integer, floating point, or enumeration. For such a member, it is not safe
to assume that the member has a reasonable default value. This is especially true
for enumerated types as the member’s default value may be outside the legal range
for the enumeration, in which case an exception will occur during marshaling
unless the member is explicitly set to a legal value.

If you wish to ensure that data members of primitive types are initialized to
reasonable values, you can declare default values in your Slice definition (see
Section 4.11.1). The default constructor initializes each of these data members to
its declared value.

Classes also have a second constructor that has one parameter for each data
member. This allows you to construct and initialize a class instance in a single
statement (instead of first having to construct the instance and then assigning to its
members).

For derived classes, the constructor has one parameter for each of the base
class’s data members, plus one parameter for each of the derived class’s data
members, in base-to-derived order. For example:

226

Client-Side Slice-to-C++ Mapping

6.14.4

class Base {
int i;

};

class Derived extends Base {
string s;

s
This generates:

class Base : virtual public ::Ice::0Object

{
public:
:Ice::Int i;

Base () {};
explicit Base(::Ice::Int);

//
}i

class Derived : public Base

{
public:
::std::string s;

Derived() {};
Derived(::Ice::Int, const ::std::string&);

//
i
Note that single-parameter constructors are defined as explicit, to prevent
implicit argument conversions.
By default, derived classes derive non-virtually from their base class. If you
need virtual inheritance, you can enable it using the ["cpp:virtual"] metadata
directive (see Appendix B).

Operations of Classes

Operations of classes are mapped to pure virtual member functions in the gener-
ated class. This means that, if a class contains operations (such as the format
operation of our TimeOfDay class), you must provide an implementation of the
operation in a class that is derived from the generated class. For example:5

6.14 Mapping for Classes 227

6.14.5

class TimeOfDayI : virtual public TimeOfDay {

public:
virtual std::string format ()
std::ostringstream s;
S << setw(2) << setfill('0') << hour << ":";
s << setw(2) << setfill('0') << minute << ":";
s << setw(2) << setfill('0') << second;
return s.c_str();
1
protected:

virtual ~TimeOfDayI() {} // Optional

}i

Class Factories

Having created a class such as TimeOfDayI, we have an implementation and we
can instantiate the TimeOfDayI class, but we cannot receive it as the return
value or as an out-parameter from an operation invocation. To see why, consider
the following simple interface:

interface Time {
TimeOfDay get();

};

When a client invokes the get operation, the Ice run time must instantiate and
return an instance of the TimeOfDay class. However, TimeOfDay is an abstract
class that cannot be instantiated. Unless we tell it, the Ice run time cannot magi-
cally know that we have created a TimeOfDayT class that implements the
abstract format operation of the TimeOfDay abstract class. In other words, we
must provide the Ice run time with a factory that knows that the TimeOfDay
abstract class has a TimeOfDayI concrete implementation. The Ice: :Communi-
cator interface provides us with the necessary operations:

module Ice {

Tocal interface ObjectFactory {
Object create(string type);
void destroy();

};

5. We discuss the motivation for the protected destructor on page 238.

228

Client-Side Slice-to-C++ Mapping

Jocal interface Communicator {
void addObjectFactory(ObjectFactory factory, string id);
ObjectFactory findObjectFactory(string id);
// ...
};
};

To supply the Ice run time with a factory for our TimeOfDayT class, we must
implement the ObjectFactory interface:

module Ice {

Tocal interface ObjectFactory {
Object create(string type);
void destroy();

};

};

The object factory’s create operation is called by the Ice run time when it needs
to instantiate a TimeOfDay class. The factory’s destroy operation is called by the
Ice run time when its communicator is destroyed. A possible implementation of
our object factory is:

class ObjectFactory : public Ice::ObjectFactory ({

public:
virtual Ice::0ObjectPtr create(const std::string& type) {
assert (type == M::TimeOfDay::ice staticId());
return new TimeOfDayI;
}
virtual void destroy() {}
}i

The create method is passed the type ID (see Section 4.13) of the class to
instantiate. For our TimeOfDay class, the type ID is ": :M: : TimeOfDay". Our
implementation of create checks the type ID: if it matches, the method instanti-
ates and returns a TimeOfDayI object. For other type IDs, the method asserts
because it does not know how to instantiate other types of objects.

Note that we used the ice staticId method to obtain the type ID rather
than embedding a literal string. Using a literal type ID string in your code is
discouraged because it can lead to errors that are only detected at run time. For
example, if a Slice class or one of its enclosing modules is renamed and the literal
string is not changed accordingly, a receiver will fail to unmarshal the object and
the Ice run time will raise NoObjectFactoryException. By using
ice_ staticId instead, we avoid any risk of a misspelled or obsolete type ID,
and we can discover at compile time if a Slice class or module has been renamed.

6.14 Mapping for Classes 229

6.14.6

Given a factory implementation, such as our ObjectFactory, we must
inform the Ice run time of the existence of the factory:

Ice: :CommunicatorPtr ic = ...;
ic->addObjectFactory (new ObjectFactory,
M: :TimeOfDay: :ice_staticId()) ;

Now, whenever the Ice run time needs to instantiate a class with the type ID
"::M::TimeOfDay", it calls the create method of the registered ObjectFac-
tory instance.

The destroy operation of the object factory is invoked by the Ice run time
when the communicator is destroyed. This gives you a chance to clean up any
resources that may be used by your factory. Do not call destroy on the factory
while it is registered with the communicator—if you do, the Ice run time has no
idea that this has happened and, depending on what your destroy implementation
is doing, may cause undefined behavior when the Ice run time tries to next use the
factory.

The run time guarantees that destroy will be the last call made on the factory,
that is, create will not be called concurrently with destroy, and create will not
be called once destroy has been called. However, calls to create can be made
concurrently.

Note that you cannot register a factory for the same type ID twice: if you call
addObjectFactory with a type ID for which a factory is registered, the Ice run
time throws an AlreadyRegisteredException.

Finally, keep in mind that if a class has only data members, but no operations,
you need not create and register an object factory to transmit instances of such a
class. Only if a class has operations do you have to define and register an object
factory.

Smart Pointers for Classes

A recurring theme for C++ programmers is the need to deal with memory alloca-
tions and deallocations in their programs. The difficulty of doing so is well
known: in the face of exceptions, multiple return paths from functions, and callee-
allocated memory that must be deallocated by the caller, it can be extremely diffi-
cult to ensure that a program does not leak resources. This is particularly impor-
tant in multi-threaded programs: if you do not rigorously track ownership of
dynamic memory, a thread may delete memory that is still used by another thread,
usually with disastrous consequences.

230

Client-Side Slice-to-C++ Mapping

To alleviate this problem, Ice provides smart pointers for classes. These smart
pointers use reference counting to keep track of each class instance and, when the
last reference to a class instance disappears, automatically delete the instance.®
Smart pointers are generated by the Slice compiler for each class type. For a Slice
class <class-name>, the compiler generates a C++ smart pointer called
<class-name>Ptr. Rather than showing all the details of the generated class,
here is the basic usage pattern: whenever you allocate a class instance on the heap,
you simply assign the pointer returned from new to a smart pointer for the class.
Thereafter, memory management is automatic and the class instance is deleted
once the last smart pointer for it goes out of scope:

{ // Open scope
TimeOfDayPtr tod = new TimeOfDayI; // Allocate instance
// Initialize...
tod->hour = 18;

tod->minute = 11;
tod->second = 15;
//
} // No memory leak here!

As you can see, you use operator- > to access the members of the class via its
smart pointer. When the tod smart pointer goes out of scope, its destructor runs
and, in turn, the destructor takes care of calling delete on the underlying class
instance, so no memory is leaked.

The smart pointers perform reference counting of their underlying class
instance:

* The constructor of a class sets its reference count to zero.

* Initializing a smart pointer with a dynamically-allocated class instance causes
the smart pointer to increment the reference count for the class by one.

* Copy constructing a smart pointer increments the reference count for the class
by one.

* Assigning one smart pointer to another increments the target’s reference count
and decrements the source’s reference count. (Self-assignment is safe.)

® The destructor of a smart pointer decrements the reference count by one and
calls delete on its class instance if the reference count drops to zero.

6. Smart pointer classes are an example of the RAII (Resource Acquisition Is Initialization)
idiom [20].

6.14 Mapping for Classes 231

Figure 6.2 shows the situation after default-constructing a smart pointer as
follows:

TimeOfDayPtr tod;

This creates a smart pointer with an internal null pointer.

tod

Figure 6.2. Newly initialized smart pointer.

Constructing a class instance creates that instance with a reference count of zero;
the assignment to the class pointer causes the smart pointer to increment the
class’s reference count:

tod = new TimeOfDayI; // Refcount == 1

The resulting situation is shown in Figure 6.3.

—

1

Figure 6.3. Initialized smart pointer.

Assigning or copy-constructing a smart pointer assigns and copy-constructs the
smart pointer (not the underlying instance) and increments the reference count of
the instance:

TimeOfDayPtr tod2(tod); // Copy-construct tod2

TimeOfDayPtr tod3;
tod3 = tod; // Assign to tod3

232 Client-Side Slice-to-C++ Mapping

The situation after executing these statements is shown in Figure 6.4:

—

Figure 6.4. Three smart pointers pointing at the same class instance.

Continuing the example, we can construct a second class instance and assign it to
one of the original smart pointers, tod2:

tod2 = new TimeOfDayI;
This decrements the reference count of the class originally denoted by tod2

and increments the reference count of the class that is assigned to tod2. The
resulting situation is shown in Figure 6.5.

Figure 6.5. Three smart pointers and two instances.

You can clear a smart pointer by assigning zero to it:

tod = 0; // Clear handle

6.14 Mapping for Classes 233

As you would expect, this decrements the reference count of the instance, as
shown in Figure 6.6.

Figure 6.6. Decremented reference count after clearing a smart pointer.

If a smart pointer goes out of scope, is cleared, or has a new instance assigned to
it, the smart pointer decrements the reference count of its instance; if the reference
count drops to zero, the smart pointer calls delete to deallocate the instance.
The following code snippet deallocates the instance on the right by assigning
tod2 to tod3:

tod3 = tod2;

This results in the situation shown in Figure 6.7.

Figure 6.7. Deallocation of an instance with a reference count of zero.

Copying and Assignment of Classes

Classes have a default memberwise copy constructor and assignment operator, so
you can copy and assign class instances:

TimeOfDayPtr tod = new TimeOfDayI (2, 3, 4); // Create instance
TimeOfDayPtr tod2 = new TimeOfDayI (*tod) ; // Copy instance

TimeOfDayPtr tod3 new TimeOfDayI;
*tod3 = *tod; // Assign instance

234

Client-Side Slice-to-C++ Mapping

Copying and assignment in this manner performs a memberwise shallow copy
or assignment, that is, the source members are copied into the target members; if a
class contains class members (which are mapped as smart pointers), what is
copied or assigned is the smart pointer, not the target of the smart pointer.
To illustrate this, consider the following Slice definitions:
class Node {
int i;
Node next;
s
Assume that we initialize two instances of type Node as follows:

NodePtr pl = new Node (99, new Node (48, 0));
NodePtr p2 new Node (23, 0);

!/

*p2 = *pl; // Assignment

After executing the first two statements, we have the situation shown in
Figure 6.8.

Figure 6.8. Class instances prior to assignment.

6.14 Mapping for Classes 235

After executing the assignment statement, we end up with the result shown in
Figure 6.9.

Figure 6.9. Class instances after assignment.

Note that copying and assignment also works for the implementation of abstract
classes, such as our TimeO£fDayT class, for example:

class TimeOfDayI;
typedef IceUtil::Handle<TimeOfDayI> TimeOfDayIPtr;

class TimeOfDayI : virtual public TimeOfDay {
// As before...
}i

The default copy constructor and assignment operator will perform a memberwise
copy or assignment of your implementation class:

TimeOfDayIPtr todl = new TimeOfDayI;
TimeOfDayIPtr tod2 = new TimeOfDayI (*todl) ; // Make copy

Of course, if your implementation class contains raw pointers (for which a
memberwise copy would almost certainly be inappropriate), you must implement
your own copy constructor and assignment operator that take the appropriate
action (and probably call the base copy constructor or assignment operator to take
care of the base part).

Note that the preceding code uses TimeOfDayIPtr as a typedef for
IceUtil: :Handle<TimeOfDayI>. This class is a template that contains the
smart pointer implementation. If you want smart pointers for the implementation
of an abstract class, you must define a smart pointer type as illustrated by this type
definition.

236

Client-Side Slice-to-C++ Mapping

Copying and assignment of classes also works correctly for derived classes:
you can assign a derived class to a base class, but not vice-versa; during such an
assignment, the derived part of the source class is sliced, as per the usual C++
assignment semantics.

Polymorphic Copying of Classes

As shown in Section 6.14.1 on page 222, the C++ mapping generates an
ice_clone member function for every class:

class TimeOfDay : virtual public Ice::0Object ({

public:

//

virtual Ice::0ObjectPtr ice clone() const;
}i

This member function makes a polymorphic shallow copy of a class: members
that are not class members are deep copied; all members that are class members
are shallow copied. To illustrate, consider the following class definition:

class Node {
Node nl;
Node n2;

};

Assume that we have an instance of this class, with the n1 and n2 members
initialized to point at separate instances, as shown in Figure 6.10.

Figure 6.10. A class instance pointing at two other instances.

6.14 Mapping for Classes 237

If we call ice_clone on the instance on the left, we end up with the situation
shown in Figure 6.11.

e

| o2 | "
2
P n2

Figure 6.11. Resulting graph after calling ice clone on the left-most instance of Figure 6.10.

As you can see, class members are shallow copied, that is, ice clone makes a
copy of the class instance on which it is invoked, but does not copy any class
instances that are pointed at by the copied instance.

Note that ice clone returns a value of type Ice: : ObjectPtr, to avoid
problems with compilers that do not support covariant return types. The generated
Ptr classes contain a dynamicCast member that allows you to safely down-
cast the return value of ice clone. For example, the code to achieve the situa-
tion shown in Figure 6.11 looks as follows:

NodePtr pl = new Node (new Node, new Node) ;
NodePtr p2 NodePtr: :dynamicCast (pl->ice clone()) ;

ice clone is generated by the Slice compiler for concrete classes (that is,
classes that do not have operations). However, because classes with operations are
abstract, for abstract classes, the generated ice clone cannot know how to
instantiate an instance of the derived concrete class (because the name of the
derived class is not known). This means that, for abstract classes, the generated
ice clone throws a CloneNotImplementedException.

If you want to clone the implementation of an abstract class, you must over-
ride the virtual ice clone member in your concrete implementation class. For

example:
class TimeOfDayI : public TimeOfDay {
public:
virtual Ice::ObjectPtr ice clone() const
{
return new TimeOfDayI (*this) ;
!

}i

238 Client-Side Slice-to-C++ Mapping

Null Smart Pointers

A null smart pointer contains a null C++ pointer to its underlying instance. This
means that if you attempt to dereference a null smart pointer, you get an
IceUtil::NullHandleException:

TimeOfDayPtr tod; // Construct null handle
try {
tod->minute = 0; // Dereference null handle
assert (false) ; // Cannot get here

} catch (const IceUtil::NullHandleException&) ({

; // OK, expected
} catch (...) {

assert (false) ; // Must get NullHandleException
!

Preventing Stack-Allocation of Class Instances

The Ice C++ mapping expects class instances to be allocated on the heap. Allo-
cating class instances on the stack or in static variables is pragmatically useless
because all the Ice APIs expect parameters that are smart pointers, not class
instances. This means that, to do anything with a stack-allocated class instance,
you must initialize a smart pointer for the instance. However, doing so does not
work because it inevitably leads to a crash:

{ // Enter scope
TimeOfDayl t; // Stack-allocated class instance
TimeOfDayPtr todp; // Handle for a TimeOfDay instance
todp = &t; // Legal, but dangerous
//

} // Leave scope, looming crash!

This goes badly wrong because, when todp goes out of scope, it decrements the
reference count of the class to zero, which then calls delete on itself. However,
the instance is stack-allocated and cannot be deleted, and we end up with unde-
fined behavior (typically, a core dump).

The following attempt to fix this is also doomed to failure:
{ // Enter scope

TimeOfDayI t; // Stack-allocated class instance
TimeOfDayPtr todp; // Handle for a TimeOfDay instance

6.14 Mapping for Classes 239

todp = &t; // Legal, but dangerous
//
todp = 0; // Crash imminent!

}

This code attempts to circumvent the problem by clearing the smart pointer
explicitly. However, doing so also causes the smart pointer to drop the reference
count on the class to zero, so this code ends up with the same call to delete on
the stack-allocated instance as the previous example.

The upshot of all this is: never allocate a class instance on the stack or in a
static variable. The C++ mapping assumes that all class instances are allocated on
the heap and no amount of coding trickery will change this.”

You can prevent allocation of class instances on the stack or in static variables
by adding a protected destructor to your implementation of the class: if a class has
a protected destructor, allocation must be made with new, and static or stack allo-
cation causes a compile time error. In addition, explicit calls to delete on a
heap-allocated instance also are flagged at compile time. You may want to habitu-
ally add a protected destructor to your implementation of abstract Slice classes to
protect yourself from accidental heap allocation, as shown on page 226. (For Slice
classes that do not have operations, the Slice compiler automatically adds a
protected destructor.)

Smart Pointers and Constructors

Slice classes inherit their reference-counting behavior from the

IceUtil: :Shared class (see Appendix F), which ensures that reference
counts are managed in a thread-safe manner. When a stack-allocated smart pointer
goes out of scope, the smart pointer invokes the decRef function on the refer-
ence-counted object. Ignoring thread-safety issues, decRef is implemented

like this:
void
IceUtil::Shared:: decRef()
{
if (--_ref == 0 && ! noDelete)

delete this;

7. You could abuse the setNoDelete member to disable deallocation, but we strongly
discourage you from doing this.

240

Client-Side Slice-to-C++ Mapping

In other words, when the smart pointer calls decRef on the pointed-at
instance and the reference count reaches zero (which happens when the last smart
pointer for a class instance goes out of scope), the instance self-destructs by
calling delete this.

However, as you can see, the instance self-destructs only if noDelete is
false (which it is by default, because the constructor initializes it to false). You can
call setNoDelete (true) to prevent this self-destruction and, later, call
___setNoDelete (false) toenable it again. This is necessary if, for example,
a class in its constructor needs to pass this to another function:

void someFunction (const TimeOfDayPtré& t)

{
}

TimeOfDayIl: :TimeOfDaylI ()

{
}

At first glance, this code looks innocuous enough. While TimeOfDayT is being
constructed, it passes this to someFunction, which expects a smart pointer.

The compiler constructs a temporary smart pointer at the point of call (because the
smart pointer template has a single-argument constructor that accepts a pointer to
a heap-allocated instance, so the constructor acts a conversion function). However,
this code fails badly. The TimeO£fDay1I instance is constructed with a statement
such as:

//

someFunction (this); // Trouble looming here!

TimeOfDayPtr tod = new TimeOfDayI;

The constructor of TimeOfDayT is called by operator new and, when the
constructor starts executing, the reference count of the instance is zero (because
that is what the reference count is initialized to by the Shared base class of
TimeOfDayI). When the constructor calls someFunction, the compiler
creates a temporary smart pointer, which increments the reference count of the
instance and, once someFunction completes, the compiler dutifully destroys
that temporary smart pointer again. But, of course, that drops the reference count
back to zero and causes the TimeOfDayT instance to self-destruct by calling
delete this. The net effect is that the call to new TimeOfDayT returns a
pointer to an already deleted object, which is likely to cause the program to crash.

To get around the problem, you can call _setNoDelete:

6.14 Mapping for Classes 241

TimeOfDayI: :TimeOfDayT ()

{
___setNoDelete (true) ;
someFunction (this) ;
___setNoDelete (false) ;
}

The code disables self-destruction while someFunction uses its temporary
smart pointer by calling setNoDelete (true). By doing this, the reference
count of the instance is incremented before someFunction is called and decre-
mented back to zero when someFunction completes without causing the
object to self-destruct. The constructor then re-enables self-destruction by calling
__setNoDelete (false) before returning, so the statement

TimeOfDayPtr tod = new TimeOfDayI;

does the usual thing, namely to increment the reference count of the object to 1,
despite the fact that a temporary smart pointer existed while the constructor ran.

In general, whenever a class constructor passes this to a function or another
class that accepts a smart pointer, you must temporarily disable self-destruction.

Smart Pointers and Exception Safety

Smart pointers are exception safe: if an exception causes the thread of execution to
leave a scope containing a stack-allocated smart pointer, the C++ run time ensures
that the smart pointer’s destructor is called, so no resource leaks can occur:

{ // Enter scope...
TimeOfDayPtr tod = new TimeOfDayI; // Allocate instance

someFuncThatMightThrow () ; // Might throw. ..

//

} // No leak here, even if an exception is thrown

If an exception is thrown, the destructor of tod runs and ensures that it deallo-
cates the underlying class instance.

There is one potential pitfall you must be aware of though: if a constructor of a
base class throws an exception, and another class instance holds a smart pointer to
the instance being constructed, you can end up with a double deallocation. You
canuse the setNoDelete mechanism to temporarily disable self-destruction
in this case, as described in the previous section.

242

Client-Side Slice-to-C++ Mapping

Smart Pointers and Cycles

One thing you need to be aware of is the inability of reference counting to deal
with cyclic dependencies. For example, consider the following simple self-refer-
ential class:

class Node {
int val;
Node next;

};

Intuitively, this class implements a linked list of nodes. As long as there are no
cycles in the list of nodes, everything is fine, and our smart pointers will correctly
deallocate the class instances. However, if we introduce a cycle, we have a
problem:

{ // Open scope. ..
NodePtr nl = new Node; // N1 refcount == 1
NodePtr n2 = new Node; // N2 refcount == 1
nl-s>next = n2; // N2 refcount == 2
n2->next = nl; // N1 refcount == 2
} // Destructors run: // N2 refcount == 1,
// N1 refcount == 1, memory leak!

The nodes pointed to by n1 and n2 do not have names but, for the sake of illustra-
tion, let us assume that n1’s node is called N1, and n2’s node is called N2. When
we allocate the N1 instance and assign it to n1, the smart pointer nl increments
N1’s reference count to 1. Similarly, N2’s reference count is 1 after allocating the
node and assigning it to n2. The next two statements set up a cyclic dependency
between nl and n2 by making their next pointers point at each other. This sets
the reference count of both N1 and N2 to 2. When the enclosing scope closes, the
destructor of n2 is called first and decrements N2’s reference count to 1, followed
by the destructor of n1, which decrements N1’s reference count to 1. The net
effect is that neither reference count ever drops to zero, so both N1 and N2 are
leaked.

Garbage Collection of Class Instances

The previous example illustrates a problem that is generic to using reference
counts for deallocation: if a cyclic dependency exists anywhere in a graph
(possibly via many intermediate nodes), all nodes in the cycle are leaked.

6.14 Mapping for Classes 243

To avoid memory leaks due to such cycles, Ice for C++ contains a garbage
collector. The collector identifies class instances that are part of one or more
cycles but are no longer reachable from the program and deletes such instances:

* By default, garbage is collected whenever you destroy a communicator. This
means that no memory is leaked when your program exits. (Of course, this
assumes that you correctly destroy your communicators as described in
Section 8.3.)

* You can also explicitly call the garbage collector by calling
Ice::collectGarbage. For example, the leak caused by the preceding
example can be avoided as follows:

{ // Open scope. ..
NodePtr nl = new Node; // N1 refcount == 1
NodePtr n2 = new Node; // N2 refcount == 1
nl-snext = n2; // N1 refcount == 2
n2-snext = nl; // N2 refcount == 2

} // Destructors run: // N2 refcount == 1,

// N1 refcount == 1

Ice::collectGarbage () ; // Deletes N1 and N2

The call to Ice: :collectGarbage deletes the no longer reachable
instances N1 and N2 (as well as any other non-reachable instances that may
have accumulated earlier).

* Deleting leaked memory with explicit calls to the garbage collector can be
inconvenient because it requires polluting the code with calls to the collector.
You can ask the Ice run time to run a garbage collection thread that periodi-
cally cleans up leaked memory by setting the property Ice.GC.Interval
to a non-zero value.® For example, setting Ice.GC.Interval to 5 causes
the collector thread to run the garbage collector once every five seconds. You
can trace the execution of the collector by setting Ice.Trace.GC to a non-
zero value (Appendix D).

Note that the garbage collector is useful only if your program actually creates
cyclic class graphs. There is no point in running the garbage collector in programs
that do not create such cycles. (For this reason, the collector thread is disabled by

8. See Chapter 30 for how to set properties.

244 Client-Side Slice-to-C++ Mapping
default and runs only if you explicitly set Ice.GC.Interval to a non-zero
value.)

Smart Pointer Comparison
As for proxy handles (see Section 6.11.4 on page 210), class handles support the
comparison operators ==, ! =, and <. This allows you to use class handles in STL
sorted containers. Be aware that, for smart pointers, object identity is not used for
the comparison, because class instances do not have identity. Instead, these opera-
tors simply compare the memory address of the classes they point to. This means
that operator== returns true only if two smart pointers point at the same phys-
ical class instance:
// Create a class instance and initialize
//
TimeOfDayIPtr pl = new TimeOfDayTI;
pl->hour = 23;
pl->minute = 10;
pl->second = 18;
// Create another class instance with
// the same member values
!/
TimeOfDayIPtr p2 = new TimeOfDayI;
p2->hour = 23;
p2->minute = 10;
p2->second = 18;
assert (pl != p2); // The two do not compare equal
TimeOfDayIPtr p3 = pl; // Point at first class again
assert (pl == p3); // Now they compare equal
6.15 Asynchronous Method Invocation (AMI)
NOTE: As of version 3.4, Ice provides a new API for asynchronous method invocation.

This section describes this APIL. You can find documentation for the previous API
in Appendix K. Note that the old API is deprecated and will be removed in a
future release.

6.15 Asynchronous Method Invocation (AMI) 245

6.15.1

Asynchronous Method Invocation (AMI) is the term used to describe the client-
side support for the asynchronous programming model. AMI supports both
oneway and twoway requests, but unlike their synchronous counterparts, AMI
requests never block the calling thread. When a client issues an AMI request, the
Ice run time hands the message off to the local transport buffer or, if the buffer is
currently full, queues the request for later delivery. The application can then
continue its activities and poll or wait for completion of the invocation, or receive
a callback when the invocation completes.

AMI is transparent to the server: there is no way for the server to tell whether
a client sent a request synchronously or asynchronously.

Basic Asynchronous API
Consider the following simple Slice definition:

module Demo {
interface Employees {
string getName(int number);
1
};

Proxy Methods

Besides the synchronous proxy methods, s1ice2cpp generates the following
asynchronous proxy methods:’

Ice::AsyncResultPtr begin getName (Ice::Int number) ;
Ice::AsyncResultPtr begin getName (Ice::Int number,
const Ice::Context& _ ctx)

std::string end getName (const Ice::AsyncResultPtr&);

As you can see, the single getName operation results in begin getName and
end getName methods. (The begin method is overloaded so you can pass a
per-invocation context—see Section 32.12.)

* The begin getName method sends (or queues) an invocation of getName.
This method does not block the calling thread.

9. There are four additional overloads of begin getName that we discuss in Sections 6.15.4 and
6.15.5.

246

Client-Side Slice-to-C++ Mapping

* The end getName method collects the result of the asynchronous invoca-
tion. If, at the time the calling thread calls end_getName, the result is not
yet available, the calling thread blocks until the invocation completes. Other-
wise, if the invocation completed some time before the call to
end getName, the method returns immediately with the result.

A client could call these methods as follows:

EmployeesPrx e = ...;
Ice::AsyncResultPtr r = e->begin getName (99) ;

// Continue to do other things here...

string name = e->end getName (r) ;

Because begin getName does not block, the calling thread can do other things
while the operation is in progress.

Note that begin getName returns a value of type AsyncResultPtr.
The AsyncResult associated with this smart pointer contains the state that the
Ice run time requires to keep track of the asynchronous invocation. You must pass
the AsyncResultPtr that is returned by the begin method to the corre-
sponding end_ method.

The begin method has one parameter for each in-parameter of the corre-
sponding Slice operation. Similarly, the end method has one out-parameter for
each out-parameter of the corresponding Slice operation (plus the AsyncRe-
sultPtr parameter). For example, consider the following operation:

double op(int inpl, string inp2, out bool outpl, out Tong outp2);

The begin op and end_op methods have the following signature:

Ice::AsyncResultPtr begin op(Ice::Int inpl,
const ::std::string& inp2)

Ice::Double end op(bool& outpl, Ice::Long& outp2,
const Ice::AsyncResultPtr&) ;

Exception Handling

If an invocation raises an exception, the exception is thrown by the end method,
even if the actual error condition for the exception was encountered during the
begin method (“on the way out”). The advantage of this behavior is that all
exception handling is located with the code that calls the end_ method (instead of
being present twice, once where the begin method is called, and again where
the end_ method is called).

6.15 Asynchronous Method Invocation (AMI) 247

There is one exception to the above rule: if you destroy the communicator and
then make an asynchronous invocation, the begin_method throws Communi -
catorDestroyedException. This is necessary because, once the run time is
finalized, it can no longer throw an exception from the end method.

The only other exception that is thrown by the begin and end_methods is
IceUtil::IllegalArgumentException. This exception indicates that
you have used the API incorrectly. For example, the begin method throws this
exception if you call an operation that has a return value or out-parameters on a
oneway proxy. Similarly, the end method throws this exception if you use a
different proxy to call the end_ method than the proxy you used to call the
begin_method, or if the AsyncResult you pass to the end_ method was
obtained by calling the begin method for a different operation.

6.15.2 The AsyncResult Class

The AsyncResult that is returned by the begin method encapsulates the
state of the asynchronous invocation:

class AsyncResult
: virtual public IceUtil::Shared,
private IceUtil::noncopyable
public:
virtual bool operator==(const AsyncResult&) const;
virtual bool operator< (const AsyncResulté&) const;

virtual Int getHash() const;

virtual CommunicatorPtr getCommunicator () const;
virtual ConnectionPtr getConnection () const;
virtual ObjectPrx getProxy () const;

const string& getOperation() const;
LocalObjectPtr getCookie() const;

bool isCompleted() const;
void waitForCompleted() ;

bool isSent () const;
void waitForSent () ;

bool sentSynchronously () const;

248 Client-Side Slice-to-C++ Mapping

The methods have the following semantics:

®* bool operator==(const AsyncResulté&) const
bool operator< (const AsyncResulté&) const
Int getHash() const

These methods allow you to create ordered or hashed collections of pending
asynchronous invocations. This is useful, for example, if you can have a
number of outstanding requests, and need to pass state between the begin
and the end_ methods. In this case, you can use the returned AsyncRe-
sults as the key into a map that stores the state for each call.

®* CommunicatorPtr getCommunicator () const
This method returns the communicator that sent the invocation.
® virtual ConnectionPtr getConnection () const
This method returns the connection that was used for the invocation.
®* virtual ObjectPrx getProxy () const
This method returns the proxy that was used to call the begin method.
®* const string& getOperation() const
This method returns the name of the operation.
® LocalObjectPtr getCookie () const

This method returns the cookie that was passed to the begin method (see
Section 6.15.4). If you did not pass a cookie to the begin method, the
return value is null.

®* bool isCompleted() const

This method returns true if, at the time it is called, the result of an invocation
is available, indicating that a call to the end method will not block the caller.
Otherwise, if the result is not yet available, the method returns false.

® void waitForCompleted ()

This method blocks the caller until the result of an invocation becomes avail-
able.

®* bool isSent () const

When you call the begin method, the Ice run time attempts to write the
corresponding request to the client-side transport. If the transport cannot
accept the request, the Ice run time queues the request for later transmission.
isSent returns true if, at the time it is called, the request has been written to

6.15 Asynchronous Method Invocation (AMI) 249

6.15.3

the local transport (whether it was initially queued or not). Otherwise, if the
request is still queued, isSent returns false.

* void waitForSent ()

This method blocks the calling thread until a request has been written to the
client-side transport.

® bool sentSynchronously () const

This method returns true if a request was written to the client-side transport
without first being queued. If the request was initially queued, sentSyn-
chronously returns false (independent of whether the request is still in the
queue or has since been written to the client-side transport).

Polling for Completion

The AsyncResult methods allow you to poll for call completion. Polling is
useful in a variety of cases. As an example, consider the following simple inter-
face to transfer files from client to server:

interface FileTransfer

{
};

The client repeatedly calls send to send a chunk of the file, indicating at which
offset in the file the chunk belongs. A naive way to transmit a file would be along
the following lines:

void send(int offset, ByteSeq bytes);

FileHandle file = open(...);
FileTransferPrx ft = ...;
const int chunkSize = ...;

Ice::Int offset = 0;

while (!file.eof()) {
ByteSeq bs;
bs = file.read(chunkSize); // Read a chunk
ft->send(offset, bs); // Send the chunk

offset += bs.size();

}

This works, but not very well: because the client makes synchronous calls, it
writes each chunk on the wire and then waits for the server to receive the data,
process it, and return a reply before writing the next chunk. This means that both
client and server spend much of their time doing nothing—the client does nothing

250

Client-Side Slice-to-C++ Mapping

while the server processes the data, and the server does nothing while it waits for
the client to send the next chunk.

Using asynchronous calls, we can improve on this considerably:

FileHandle file = open(...);
FileTransferPrx ft = ...;
const int chunkSize = ...;
Ice::Int offset = 0;

list<Ice::AsyncResultPtr> results;

const int numRequests = 5;
while (!file.eof()) {

ByteSeq bs;

bs = file.read(chunkSize) ;

// Send up to numRequests + 1 chunks asynchronously.
Ice::AsyncResultPtr r = ft->begin send(offset, bs);
offset += bs.size();

// Wait until this request has been passed to the transport.
r->waitForSent () ;
results.push back(r) ;

// Once there are more than numRequests, wait for the least
// recent one to complete.
while (results.size() > numRequests) {
Ice::AsyncResultPtr r = results.front();
results.pop_ front () ;
r->waitForCompleted () ;

}

// Wait for any remaining requests to complete.
while (!results.empty()) {
Ice::AsyncResultPtr r = results.front();
results.pop front () ;
r->waitForCompleted() ;

With this code, the client sends up to numRequests + 1 chunks before it waits
for the least recent one of these requests to complete. In other words, the client

sends the next request without waiting for the preceding request to complete, up to
the limit set by numRequests. In effect, this allows the client to “keep the pipe

6.15 Asynchronous Method Invocation (AMI) 251

6.15.4

to the server full of data”: the client keeps sending data, so both client and server
continuously do work.

Obviously, the correct chunk size and value of numRequests depend on the
bandwidth of the network as well as the amount of time taken by the server to
process each request. However, with a little testing, you can quickly zoom in on
the point where making the requests larger or queuing more requests no longer
improves performance. With this technique, you can realize the full bandwidth of
the link to within a percent or two of the theoretical bandwidth limit of a native
socket connection.

Generic Completion Callbacks

The begin_method is overloaded to allow you to provide completion callbacks.
Here are the corresponding methods for the getName operation:

Ice::AsyncResultPtr begin getName (
Ice::Int number,
const Ice::CallbackPtr& _ del,
const Ice::LocalObjectPtr& _ cookie = 0);

Ice::AsyncResultPtr begin getName (
Ice::Int number,
const Ice::Context& _ ctx,
const Ice::CallbackPtr& _ del,
const Ice::LocalObjectPtr& _ cookie = 0);

The second version of begin getName lets you override the default context.
(We discuss the purpose of the cookie parameter in the next section.) Following
the in-parameters, the begin method accepts a parameter of type

Ice: :CallbackPtr. Thisis a smart pointer to a callback class that is provided
by the Ice run time. This class stores an instance of a callback class that you
implement. The Ice run time invokes a method on your callback instance when an
asynchronous operation completes. Your callback class must provide a method
that returns void and accepts a single parameter of type

const AsyncResultPtr&, for example:

class MyCallback : public IceUtil::Shared ({
public:
void finished(const Ice::AsyncResultPtr& r) {
EmployeesPrx e =
EmployeesPrx: :uncheckedCast (r->getProxy()) ;

try {
string name = e->end getName (r) ;

252

Client-Side Slice-to-C++ Mapping

cout << "Name is: " << name << endl;
} catch (const Ice::Exception& ex) {
cerr << "Exception is: " << ex << endl;

}
}
}i

typedef IceUtil::Handle<MyCallbacks> MyCallbackPtr;

Note that your callback class must derive from IceUtil: : Shared. The call-
back method can have any name you prefer but its signature must match the
preceding example.

The implementation of your callback method must call the end method. The
proxy for the call is available via the get Proxy method on the AsyncResult
that is passed by the Ice run time. The return type of get Proxy is
Ice: :0bjectPrx, so you must down-cast the proxy to its correct type. (You
should always use an uncheckedCast to do this, otherwise you send an addi-
tional message to the server to verify the proxy type.)

Your callback method should catch and handle any exceptions that may be
thrown by the end_ method. If you allow an exception to escape from the call-
back method, the Ice run time produces a log entry by default and ignores the
exception. (You can disable the log message by setting the property
Ice.Warn.AMICallback to zero.)

To inform the Ice run time that you want to receive a callback for the comple-
tion of the asynchronous call, you pass the callback instance to the begin
method:

EmployeesPrx e = ...;

MyCallbackPtr cb = new MyCallback;
Ice::CallbackPtr d = Ice::newCallback(cb, &MyCallback::finished) ;

e->begin getName (99, d);

Note the call to Ice: :newCallback in this example. This helper function
expects a smart pointer to your callback instance and a member function pointer
that specifies your callback method.

Using Cookies

It is common for the end_ method to require access to some state that is estab-
lished by the code that calls the begin method. As an example, consider an
application that asynchronously starts a number of operations and, as each opera-
tion completes, needs to update different user interface elements with the results.

6.15 Asynchronous Method Invocation (AMI) 253

In this case, the begin_method knows which user interface element should
receive the update, and the end_ method needs access to that element.

The API allows you to pass such state by providing a cookie. A cookie is an
instance of a class that you write; the class can contain whatever data you want to
pass, as well as any methods you may want to add to manipulate that data.

The only requirement on the cookie class is that it must derive from
Ice: :LocalObject. Here is an example implementation that stores a
WidgetHandle. (We assume that this class provides whatever methods are
needed by the end_ method to update the display.)

class Cookie : public Ice::LocalObject

{

public:
Cookie (WidgetHandle h) : _h(h) {}
WidgetHandle getWidget() { return _h; }

private:
WidgetHandle _h;
}i

typedef IceUtil::Handle<Cookie> CookiePtr;

When you call the begin_ method, you pass the appropriate cookie instance to
inform the end_ method how to update the display:

// Make cookie for call to getName (99).
CookiePtr cookiel = new Cookie(widgetHandlel) ;

// Make cookie for call to getName (42) ;
CookiePtr cookie2 = new Cookie (widgetHandle2) ;

// Invoke the getName operation with different cookies.
e->begin getName (99, getNameCB, cookiel) ;
e->begin_getName (24, getNameCB, cookie2) ;

The end_ method can retrieve the cookie from the AsyncResult by calling
getCookie. For this example, we assume that widgets have a writeString
method that updates the relevant UI element:

void
MyCallback: :getName (const Ice::AsyncResultPtr& r)
{
EmployeesPrx e = EmployeesPrx::uncheckedCast (r->getProxy()) ;
CookiePtr cookie = CookiePtr::dynamicCast (r->getCookie()) ;
try {
string name = e->end getName (r) ;
cookie->getWidget () ->writeString (name) ;

254 Client-Side Slice-to-C++ Mapping
} catch (const Ice::Exception& ex) {
handleException (ex) ;
}
}
The cookie provides a simple and effective way for you to pass state between the
point where an operation is invoked and the point where its results are processed.
Moreover, if you have a number of operations that share common state, you can
pass the same cookie instance to multiple invocations.
6.15.5 Type-Safe Completion Callbacks

The generic callback API we saw in Section 6.15.4 is not entirely type-safe:

* You must down-cast the return value of get Proxy to the correct proxy type
before you can call the end method.

* You must call the correct end_ method to match the operation called by the
begin_method.

* If you use a cookie, you must down-cast the cookie to the correct type before
you can access the data inside the cookie.

* You must remember to catch exceptions when you call the end method; if
you forget to do this, you will not know that the operation failed.

slice2cpp generates an additional type-safe API that takes care of these chores
for you. The type-safe API is provided as a template that works much like the
Ice: :Callback class of the generic API, but requires strongly-typed method
signatures.

To use type-safe callbacks, you must implement a callback class that provides
two callback methods:

* asuccess callback that is called if the operation succeeds
* afailure callback that is called if the operation raises an exception
As for the generic API, your callback class must derive from

IceUtil: :Shared. Here is a callback class for an invocation of the getName
operation:

class MyCallback : public IceUtil::Shared
{
public:
void getNameCB (const string& name)
cout << "Name is: " << name << endl;
}

6.15 Asynchronous Method Invocation (AMI) 255

void failureCB(const Ice::Exception& ex) {

}

cerr << "Exception is: << ex << endl;

}i

The callback methods can have any name you prefer and must have void return
type. The failure callback always has a single parameter of type
const Ice::Exceptioné. The success callback parameters depend on the
operation signature. If the operation has non-void return type, the first parameter
of the success callback is the return value. The return value (if any) is followed by
a parameter for each out-parameter of the corresponding Slice operation, in the
order of declaration.

To receive these callbacks, you instantiate your callback instance and specify
the methods you have defined before passing a smart pointer to a callback wrapper
instance to the begin method:

MyCallbackPtr cb = new MyCallback;

Callback Employees getNamePtr getNameCB =
newCallback Employees getName (
cb, &MyCallback::getNameCB, &MyCallback::failureCB) ;

Callback Employees getNumberPtr getNumberCB =
newCallback Employees getNumber (
cb, &MyCallback: :getNumberCB, &MyCallback::failureCB) ;

e->begin getName (99, getNameCB) ;
e->begin getNumber ("Fred", getNumberCB) ;

Note how this code creates instances of two smart pointer types generated by
slice2cpp named Callback Employees getNamePtr and
Callback Employees getNumberPtr. Each smart pointer points to a
template instance that encapsulates your callback instance and two member func-
tion pointers for the callback methods. The name of this smart pointer type is
<module>::Callback <interface> <operation>Ptr.

Also note that the code uses helper functions to initialize the smart pointers.
The first argument to the helper function is your callback instance, and the two
following arguments are the success and failure member function pointers, respec-
tively. The name of this helper function is
<module>: :newCallback <interface> <operations.

It is legal to pass a null pointer as the success or failure callback. For the
success callback, this is legal only for operations that have void return type and no

256

Client-Side Slice-to-C++ Mapping

out-parameters. This is useful if you do not care when the operation completes but
want to know if the call failed. If you pass a null exception callback, the Ice run
time will ignore any exception that is raised by the invocation.

The type of the success and exception member function pointers is provided as
Response and Exception typedefs by the callback template. For example,
you can ignore exceptions for an invocation of getName as follows:

Callback Employees op::Exception nullException = 0;
MyCallbackPtr cb = new MyCallback;

Callback Employees getNamePtr getNameCB =
newCallback Employees_ getName (
cb, &MyCallback::getNameCB, nullException) ;

e->begin getName (99, getNameCB); // Ignores exceptions

Using Cookies

The begin method optionally accepts a cookie as a trailing parameter. As for
the generic API, you can use the cookie to share state between the begin and
end_ methods. However, with the type-safe API, there is no need to down-cast
the cookie. Instead, the cookie parameter that is passed to the end_ method is
strongly typed. Assuming that you have defined a Cookie class and Cook -
iePtr smart pointer, you can pass a cookie to the begin method as follows:

MyCallbackPtr cb = new MyCallback;

Callback Employees getNamePtr getNameCB =
newCallback Employees getName (
cb, &MyCallback::getNameCB, &MyCallback::failureCB) ;

CookiePtr cookie = new Cookie (widgetHandle) ;
e->begin_getName (99, getNameCB, cookie) ;

The callback methods of your callback class simply add the cookie parameter:

class MyCallback : public IceUtil::Shared

public:
void getNameCB (const string& name, const CookiePtr& cookie) {
cookie->getWidget () ->writeString (name) ;

void failureCB(const Ice::Exception& ex,

6.15 Asynchronous Method Invocation (AMI) 257

6.15.6

6.15.7

const CookiePtr& cookie) {
cookie->getWidget () ->writeError (ex.what ()) ;

}i

Oneway Invocations

You can invoke operations via oneway proxies asynchronously, provided the oper-
ation has void return type, does not have any out-parameters, and does not raise
user exceptions. If you call the begin method on a oneway proxy for an opera-
tion that returns values or raises a user exception, the begin method throws an
IceUtil::IllegalArgumentException.

For the generic API, the callback method looks exactly as for a twoway invo-
cation. However, for oneway invocations, the Ice run time does not call the call-
back method unless the invocation raised an exception during the begin
method (“on the way out”).

For the type-safe API, the newCallback helper for void operations is over-
loaded so you can omit the success callback. For example, here is how you could
call ice_ping asynchronously:

MyCallbackPtr cb = new MyCallback;

Ice::Callback Object ice pingPtr callback =
Ice::newCallback Object ice ping(cb, &MyCallback::failureCB) ;

p->begin opVoid(callback) ;

Flow Control

Asynchronous method invocations never block the thread that calls the begin
method: the Ice run time checks to see whether it can write the request to the local
transport. If it can, it does so immediately in the caller’s thread. (In that case,
AsyncResult: :sentSynchronously returns true.) Alternatively, if the
local transport does not have sufficient buffer space to accept the request, the Ice
run time queues the request internally for later transmission in the background. (In
that case, AsyncResult : : sentSynchronously returns false.)

This creates a potential problem: if a client sends many asynchronous requests
at the time the server is too busy to keep up with them, the requests pile up in the
client-side run time until, eventually, the client runs out of memory.

The API provides a way for you to implement flow control by counting the
number of requests that are queued so, if that number exceeds some threshold, the

258

Client-Side Slice-to-C++ Mapping

client stops invoking more operations until some of the queued operations have
drained out of the local transport.

For the generic API, you can create an additional callback method:

class MyCallback : public IceUtil::Shared ({
public:
void finished(const Ice::AsyncResultPtr&);
void sent (const Ice::AsyncResultPtré&);

}i

typedef IceUtil::Handle<MyCallback> MyCallbackPtr;

As with any other callback method, you are free to choose any name you like. For
this example, the name of the callback method is sent. You inform the Ice run
time that you want to be informed when a call has been passed to the local trans-
port by specifying the sent method as an additional parameter when you create
the Ice: :Callback:

EmployeesPrx e = ...;

MyCallbackPtr cb = new MyCallback;

Ice::CallbackPtr d = Ice::newCallback(cb,
&MyCallback: :finished,
&MyCallback: :sent) ;

e->begin_getName (99, 4d);

If the Ice run time can immediately pass the request to the local transport, it does
so and invokes the sent method from the thread that calls the begin method.
On the other hand, if the run time has to queue the request, it calls the sent
method from a different thread once it has written the request to the local trans-
port. In addition, you can find out from the AsyncResult that is returned by the
begin_method whether the request was sent synchronously or was queued, by
calling sentSynchronously.

For the generic API, the sent method has the following signature:
void sent (const Ice::AsyncResultég) ;
For the type-safe API, there are two versions, one without and one with a cookie:

void sent (bool sentSynchronously) ;
void sent (bool sentSynchronously, const <CookiePtr>& cookie) ;

For the version with a cookie, <CookiePtr> is replaced with the actual type of
the cookie smart pointer you passed to the begin method.

6.15 Asynchronous Method Invocation (AMI) 259

6.15.8

6.15.9

6.15.10

The sent methods allow you to limit the number of queued requests by
counting the number of requests that are queued and decrementing the count when
the Ice run time passes a request to the local transport.

Batch Requests

Applications that send batched requests (see Section 32.16) can either flush a
batch explicitly or allow the Ice run time to flush automatically. The proxy method
ice flushBatchRequests performs an immediate flush using the synchro-
nous invocation model and may block the calling thread until the entire message
can be sent. Ice also provides asynchronous versions of this method so you can
flush batch requests asynchronously.

begin ice flushBatchRequests and
end ice flushBatchRequests are proxy methods that flush any batch
requests queued by that proxy.

In addition, similar methods are available on the communicator and the
Connection object that is returned by AsyncResult: :getConnection.
These methods flush batch requests sent via the same communicator and via the
same connection, respectively.

Concurrency

The Ice run time always invokes your callback methods from a separate thread.
This means that you can safely use a non-recursive mutex without risking dead-
lock. There is one exception to this rule: the run time calls the sent callback
from the thread calling the begin method if the request could be sent synchro-
nously. In the sent callback, you know which thread is calling the callback by
looking at the sent Synchronously member or parameter, so you can take
appropriate action to avoid a self-deadlock.

Limitations

AMI invocations cannot be sent using collocated optimization. If you attempt to
invoke an AMI operation using a proxy that is configured to use collocation opti-
mization, the Ice run time raises CollocationOptimizationException if the
servant happens to be collocated; the request is sent normally if the servant is not
collocated. Section 32.21 provides more information about this optimization and
describes how to disable it when necessary.

260 Client-Side Slice-to-C++ Mapping

6.16 slice2cpp Command-Line Options

The Slice-to-C++ compiler, slice2cpp, offers the following command-line
options in addition to the standard options described in Section 4.20:

® --header-ext EXT

Changes the file extension for the generated header files from the default h to
the extension specified by EXT.

You can also change the header file extension with a global metadata direc-
tive:

[["cpp:header-ext:hpp"]]

/] ..

Only one such directive can appear in each source file. If you specify a header
extension on both the command line and with a metadata directive, the meta-
data directive takes precedence. This ensures that included Slice files that
were compiled separately get the correct header extension (provided that the
included Slice files contain a corresponding metadata directive). For example:

// File example.ice
#include <Ice/BuiltinSequences.ice>

// ...
Compiling this file with

$ slice2cpp --header-ext=hpp -I/opt/Ice/include \
example.ice

generates example . hpp, but the #include directive in that file is for
Ice/BuiltinSequences.h (not Ice/BuiltinSequences.hpp)
because BuiltinSequences. ice contains a metadata directive
[[”cpp:header-ext:h”]].

You normally will not need to use this metadata directive. The directive is
necessary only if:

® You #incTude a Slice file in one of your own Slice files.
* The included Slice file is part of a library you link against.
* The library ships with the included Slice file’s header.

6.16 slice2cpp Command-Line Options 261

* The library header uses a different header extension than your own code.

For example, if the library uses . hpp as the header extension, but your own
code uses . h, the library’s Slice file should contain a
[["cpp:header-ext:hpp”]] directive. (If the directive is missing, you can
add it to the library’s Slice file.)

® --source-ext EXT

Changes the file extension for the generated source files from the default cpp
to the extension specified by EXT.

®* --add-header HDRI[, GUARD]

This option adds an include directive for the specified header at the beginning
of the generated source file (preceding any other include directives). If GUARD
is specified, the include directive is protected by the specified guard. For
example, - -add-header precompiled.h, PRECOMPILED H
results in the following directives at the beginning of the generated source file:

#ifndef PRECOMPILED H
#define _ PRECOMPILED H
#include <precompiled.h>
#endif

The option can be repeated to create include directives for several files.

As suggested by the preceding example, this option is useful mainly to inte-
grate the generated code with a compiler’s precompiled header mechanism.

® —-include-dir DIR

Modifies #include directives in source files to prepend the path name of
each header file with the directory DIR. See Section 6.16.1 for more informa-
tion.

* —-impl

Generate sample implementation files. This option will not overwrite an
existing file.

® --depend
Prints makefile dependency information to standard output. No code is gener-
ated when this option is specified. The output generally needs to be filtered

before it can be included in a makefile; the Ice build system uses the script
config/makedepend.py for this purpose.

262

Client-Side Slice-to-C++ Mapping

¢ --dll-export SYMBOL

Use SYMBOL to control DLL exports or imports. This option allows you to
selectively export or import global symbols in the generated code. As an
example, compiling a Slice definition with

$ slice2cpp --dll-export ENABLE DLL x.ice

results in the following additional code being generated into x . h:

#ifndef ENABLE_DLL
ifdef ENABLE DLL_EXPORTS

define ENABLE DLL ICE DECLSPEC_ EXPORT

else

define ENABLE DLL ICE DECLSPEC IMPORT

endif

#endif

ICE _DECLSPEC_EXPORT and ICE_DECLSPEC IMPORT are platform-
specific macros. For example, for Windows, they are defined as
__declspec(dllexport) and declspec (dllimport), respec-
tively; for Solaris using CC version 5.5 or later, ICE_ DECLSPEC_EXPORT is
defined as __global, and ICE_DECLSPEC_IMPORT is empty.10

The symbol name you specify on the command line (ENABLE DLL in this
example) is used by the generated code to export or import any symbols that
must be visible to code outside the generated compilation unit. The net effect
is that, if you want to create a DLL that includes x . cpp, but also want to use
the generated types in compilation units outside the DLL, you can arrange for
the relevant symbols to be exported by compiling x . cpp with
-DENABLE DLL EXPORTS.

® - -checksum

Generate checksums for Slice definitions.

® --stream

Generate streaming helper functions for Slice types (see Section 35.2).

10.Similar definitions exist for other platforms. For platforms that do not have any concept of

explicit export or import of shared library symbols, both macros are empty.

6.16 slice2cpp Command-Line Options 263

6.16.1

Include Directives

The #include directives generated by the Slice-to-C++ compiler can be a
source of confusion if the semantics governing their generation are not well-
understood. The generation of #include directives is influenced by the
command-line options -I and - -include-dir; these options are discussed in
more detail below. The - -output-dir option directs the translator to place all
generated files in a particular directory, but has no impact on the contents of the
generated code.

Given that the #include directives in header files and source files are gener-
ated using different semantics, we describe them in separate sections.

Header Files

In most cases, the compiler generates the appropriate #include directives by
default. As an example, suppose file A. ice includes B. ice using the following
statement:

// A.ice
#include <B.ice>

Assuming both files are in the current working directory, we run the compiler as
shown below:

$ slice2cpp -I. A.ice
The generated file A . h contains this #include directive:

// A.h
#include <B.h>

If the proper include paths are specified to the C++ compiler, everything should
compile correctly.

Similarly, consider the common case where A. ice includes B. ice from a
subdirectory:

// A.ice
#include <inc/B.ice>

Assuming both files are in the inc subdirectory, we run the compiler as shown
below:

$ slice2cpp -I. inc/A.ice
The default output of the compiler produces this #include directive in A. h:

// A.h
#include <inc/B.h>

264

Client-Side Slice-to-C++ Mapping

Again, it is the user’s responsibility to ensure that the C++ compiler is configured
to find inc/B.h during compilation.

Now let us consider a more complex example, in which we do not want the
#include directive in the header file to match that of the Slice file. This can be
necessary when the organizational structure of the Slice files does not match the
application’s C++ code. In such a case, the user may need to relocate the gener-
ated files from the directory in which they were created, and the #include
directives must be aligned with the new structure.

For example, let us assume that B . ice is located in the subdirectory
slice/inc:

// A.ice
#include <slice/inc/B.ice>

However, we do not want the s1ice subdirectory to appear in the #include
directive generated in the header file, therefore we specify the additional compiler
option -Islice:

$ slice2cpp -I. -Islice slice/inc/A.ice
The generated code demonstrates the impact of this extra option:

// A.h
#include <inc/B.h>

As you can see, the #include directives generated in header files are affected
by the include paths that you specify when running the compiler. Specifically, the
include paths are used to abbreviate the path name in generated #include direc-
tives.

When translating an #include directive from a Slice file to a header file, the
compiler compares each of the include paths against the path of the included file.
If an include path matches the leading portion of the included file, the compiler
removes that leading portion when generating the #include directive in the
header file. If more than one include path matches, the compiler selects the one
that results in the shortest path for the included file.

For example, suppose we had used the following options when compiling
A.ice:

$ slice2cpp -I. -Islice -Islice/inc slice/inc/A.ice

In this case, the compiler compares all of the include paths against the included
file slice/inc/B. ice and generates the following directive:

// A.h
#include <B.h>

6.16 slice2cpp Command-Line Options 265

The option -Islice/inc produces the shortest result, therefore the default path
for the included file (s1lice/inc/B.h) is replaced with B. h.

In general, the - I option plays two roles: it enables the preprocessor to locate
included Slice files, and it provides you with a certain amount of control over the
generated #include directives. In the last example above, the preprocessor
locates slice/inc/B. ice using the include path specified by the - I . option.
The remaining - I options do not help the preprocessor locate included files; they
are simply hints to the compiler.

Finally, we recommend using caution when specifying include paths. If the
preprocessor is able to locate an included file via multiple include paths, it always
uses the first include path that successfully locates the file. If you intend to modify
the generated #include directives by specifying extra - I options, you must
ensure that your include path hints match the include path selected by the prepro-
cessor to locate the included file. As a general rule, you should avoid specifying
include paths that enable the preprocessor to locate a file in multiple ways.

Source Files

By default, the compiler generates #include directives in source files using
only the base name of the included file. This behavior is usually appropriate when
the source file and header file reside in the same directory.

For example, suppose A . ice includes B. ice from a subdirectory, as shown
in the following snippet of A. ice:

// A.ice
#include <inc/B.ice>

We generate the source file using this command:
$ slice2cpp -I. inc/A.ice

Upon examination, we see that the source file contains the following #include
directive:

// A.cpp
#include <B.h>

However, suppose that we wish to enforce a particular standard for generated
#include directives so that they are compatible with our C++ compiler’s
existing include path settings. In this case, we use the - -include-dir option
to modify the generated code. For example, consider the compiler command
shown below:

$ slice2cpp --include-dir src -I. inc/A.ice

266

Client-Side Slice-to-C++ Mapping

6.17

The source file now contains the following #include directive:

// A.cpp
#include <src/B.h>

Any leading path in the included file is discarded as usual, and the value of the
--include-dir option is prepended.

Using Slice Checksums

As described in Section 4.21, the Slice compilers can optionally generate check-
sums of Slice definitions. For slice2cpp, the - -checksum option causes the
compiler to generate code in each C++ source file that accumulates checksums in
a global map. A copy of this map can be obtained by calling a function defined in
the header file Ice/SliceChecksums.h:

namespace Ice
Ice: :SliceChecksumDict sliceChecksums() ;

In order to verify a server’s checksums, a client could simply compare the diction-
aries using the equality operator. However, this is not feasible if it is possible that
the server might be linked with more Slice definitions than the client. A more
general solution is to iterate over the local checksums as demonstrated below:

Ice::SliceChecksumDict serverChecksums =
Ice::SliceChecksumDict localChecksums = Ice::sliceChecksums () ;

for (Ice::SliceChecksumbDict::const iterator
p = localChecksums.begin() ;
p != localChecksums.end(); ++p) {

Ice::SliceChecksumDict::const iterator g
= serverChecksums.find(p->first);

if (g == serverChecksums.end()) ({
// No match found for type id!
} else if (p-»>second != g->second) ({

// Checksum mismatch!

}
}

In this example, the client first verifies that the server’s dictionary contains an
entry for each Slice type ID, and then it proceeds to compare the checksums.

Chapter 7
Developing a File System Client in
C++

7.1 Chapter Overview
In this chapter, we present the source code for a C++ client that accesses the file
system we developed in Chapter 5 (see Chapter 9 for the corresponding server).
7.2 The C++ Client

We now have seen enough of the client-side C++ mapping to develop a complete
client to access our remote file system. For reference, here is the Slice definition
once more:

module Filesystem {
interface Node {
idempotent string name();

1

exception GenericError {
string reason;

};
sequence<string> Lines;

interface File extends Node {

267

268

Developing a File System Client in C++

idempotent Lines read();
idempotent void write(Lines text) throws GenericError;

}s
sequence<Nodex=> NodeSeq;

interface Directory extends Node {
idempotent NodeSeq 1ist();
1

};

To exercise the file system, the client does a recursive listing of the file system,
starting at the root directory. For each node in the file system, the client shows the
name of the node and whether that node is a file or directory. If the node is a file,
the client retrieves the contents of the file and prints them.

The body of the client code looks as follows:

#include <Ice/Ice.h>
#include <Filesystem.h>
#include <iostream>
#include <iterator>

using namespace std;
using namespace Filesystem;

static void
listRecursive (const DirectoryPrx& dir, int depth = 0)

{

//
int
main (int argc, char* argv([])
int status = 0;
Ice: :CommunicatorPtr ic;
try {
// Create a communicator
//
ic = Ice::initialize(argc, argv);

// Create a proxy for the root directory
//
Ice::0bjectPrx base
= ic->stringToProxy ("RootDir:default -p 10000") ;

7.2 The C++ Client

269

if (!base)
throw "Could not create proxy";

// Down-cast the proxy to a Directory proxy
//
DirectoryPrx rootDir = DirectoryPrx::checkedCast (base) ;
if (!rootDir)
throw "Invalid proxy";

// Recursively list the contents of the root directory

!/

cout << "Contents of root directory:" << endl;
listRecursive (rootDir) ;

} catch (const Ice::Exception& ex) {

cerr << ex << endl;
status = 1;

} catch (const char* msg)

}

cerr << msg << endl;
status = 1;

// Clean up

//
if

(ic)
ic->destroy () ;

return status;

1. The code includes a few header files:

1.Ice/Ice.h

This file is always included in both client and server source files. It provides
definitions that are necessary for accessing the Ice run time.

2.Filesystem.h

This is the header that is generated by the Slice compiler from the Slice defi-
nitions in Filesystem. ice.

3.lostream

The client uses the iostream library to produce its output.

4 .iterator

The implementation of 1istRecursive uses an STL iterator.

270

Developing a File System Client in C++

2. The code adds using declarations for the std and Filesystem
namespaces.

3. The structure of the code in main follows what we saw in Chapter 3. After
initializing the run time, the client creates a proxy to the root directory of the
file system. For this example, we assume that the server runs on the local host
and listens using the default protocol (TCP/IP) at port 10000. The object iden-
tity of the root directory is known to be RootDir.

4. The client down-casts the proxy to DirectoryPrx and passes that proxy to
listRecursive, which prints the contents of the file system.

Most of the work happens in 1istRecursive:

// Recursively print the contents of directory "dir" in

// tree fashion. For files, show the contents of each file.
// The "depth" parameter is the current nesting level

// (for indentation) .

static void
listRecursive (const DirectoryPrx& dir, int depth = 0)

{
string indent (++depth, '\t');

NodeSeq contents = dir->list();

for (NodeSeq::const iterator i = contents.begin();

i != contents.end() ;
++1) |
DirectoryPrx dir = DirectoryPrx::checkedCast (*i) ;
FilePrx file = FilePrx::uncheckedCast (*1i) ;
cout << indent << (*1i)->name ()
<< (dir ? " (directory):" : " (file):") << endl;
if (dir)
listRecursive (dir, depth);
} else {
Lines text = file->read();
for (Lines::const iterator j = text.begin();
j != text.end();
++3) {

cout << indent << "\t" << *j << endl;

7.2 The C++ Client 271

The function is passed a proxy to a directory to list, and an indent level. (The
indent level increments with each recursive call and allows the code to print the
name of each node at an indent level that corresponds to the depth of the tree at
that node.) 1istRecursive calls the 1ist operation on the directory and iter-
ates over the returned sequence of nodes:

1. The code does a checkedCast to narrow the Node proxy to a Directory
proxy, as well as an uncheckedCast to narrow the Node proxy to a File
proxy. Exactly one of those casts will succeed, so there is no need to call
checkedCast twice: if the Node is-a Directory, the code uses the Direc-
toryPrx returned by the checkedCast; if the checkedCast fails, we
know that the Node is-a File and, therefore, an uncheckedCast is sufficient
togeta FilePrx.

In general, if you know that a down-cast to a specific type will succeed, it is
preferable to use an uncheckedCast instead of a checkedCast because
an uncheckedCast does not incur any network traffic.

2. The code prints the name of the file or directory and then, depending on which
cast succeeded, prints " (directory) " or " (file) " following the name.

3. The code checks the type of the node:
* If it is a directory, the code recurses, incrementing the indent level.

e If it is a file, the code calls the read operation on the file to retrieve the file
contents and then iterates over the returned sequence of lines, printing each
line.

Assume that we have a small file system consisting of two files and a directory as
follows:

O = Directory RootDir
@ -ri

Coleridge README

Kubla_Khan

Figure 7.1. A small file system.

The output produced by the client for this file system is:

272

Developing a File System Client in C++

7.3

Contents of root directory:
README (file):
This file system contains a collection of poetry.
Coleridge (directory) :
Kubla Khan (file):
In Xanadu did Kubla Khan
A stately pleasure-dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.

Note that, so far, our client (and server) are not very sophisticated:
* The protocol and address information are hard-wired into the code.

® The client makes more remote procedure calls than strictly necessary; with
minor redesign of the Slice definitions, many of these calls can be avoided.

We will see how to address these shortcomings in Chapter 38 and Chapter 34.

Summary

This chapter presented a very simple client to access a server that implements the
file system we developed in Chapter 5. As you can see, the C++ code hardly
differs from the code you would write for an ordinary C++ program. This is one of
the biggest advantages of using Ice: accessing a remote object is as easy as
accessing an ordinary, local C++ object. This allows you to put your effort where
you should, namely, into developing your application logic instead of having to
struggle with arcane networking APIs. As we will see in Chapter 9, this is true for
the server side as well, meaning that you can develop distributed applications
easily and efficiently.

Chapter 8
Server-Side Slice-to-C++ Mapping

8.1

Chapter Overview

8.2

In this chapter, we present the server-side Slice-to-C++ mapping (see Chapter 6
for the client-side mapping). Section 8.3 discusses how to initialize and finalize
the server-side run time, sections 8.4 to 8.6 show how to implement interfaces and
operations, and Section 8.7 discusses how to register objects with the server-side
Ice run time. Finally, Section 8.8 shows how to implement operations asynchro-
nously.

Introduction

The mapping for Slice data types to C++ is identical on the client side and server
side. This means that everything in Chapter 6 also applies to the server side.
However, for the server side, there are a few additional things you need to know,
specifically:

* how to initialize and finalize the server-side run time
* how to implement servants
* how to pass parameters and throw exceptions

* how to create servants and register them with the Ice run time.

273

274

Server-Side Slice-to-C++ Mapping

8.3

We discuss these topics in the remainder of this chapter.

The Server-Side main Function

The main entry point to the Ice run time is represented by the local interface

Ice: :Communicator. As for the client side, you must initialize the Ice run time by
calling ITce: :initialize before you can do anything else in your server.
Ice::initialize returns a smart pointer to an instance of an Ice: : Communi-
cator:

int
main (int argc, char* argv([])
Ice::CommunicatorPtr ic
= Ice::initialize(argc, argv);
//

Ice::initialize accepts a C++ reference to argc and argv. The function
scans the argument vector for any command-line options that are relevant to the
Ice run time; any such options are removed from the argument vector so, when
Ice::initialize returns, the only options and arguments remaining are
those that concern your application. If anything goes wrong during initialization,
initialize throws an exception.

Before leaving your main function, you must call Communicator: :destroy.
The destroy operation is responsible for finalizing the Ice run time. In particular,
destroy waits for any operation implementations that are still executing in the
server to complete. In addition, destroy ensures that any outstanding threads
are joined with and reclaims a number of operating system resources, such as file
descriptors and memory. Never allow your main function to terminate without
calling destroy first; doing so has undefined behavior.

The general shape of our server-side main function is therefore as follows:

#include <Ice/Ice.h>

int
main (int argc, char* argv([])

1. Ice::initialize has additional overloads to permit other information to be passed to the
Ice run time (see Section 32.3).

8.3 The Server-Side main Function 275

{
int status = 0;
Ice::CommunicatorPtr ic;
try {
ic = Ice::initialize(argc, argv);
// Server code here...
} catch (const Ice::Exception& e) {
cerr << e << endl;
status = 1;
} catch (const std::string& msg) {
cerr << msg << endl;
status = 1;
} catch (const char* msg) {
cerr << msg << endl;
status = 1;
if (ic) |
try {
ic->destroy () ;
} catch (const std::string& msg) {
cerr << msg << endl;
status = 1;
}
}
return status;
}

Note that the code places the call to Ice: :initialize into a try block and
takes care to return the correct exit status to the operating system. Also note that
an attempt to destroy the communicator is made only if the initialization
succeeded.

The catch handlers for const std::string & and const char *
are in place as a convenience feature: if we encounter a fatal error condition
anywhere in the server code, we can simply throw a string or a string literal
containing an error message; this causes the stack to be unwound back to main, at
which point the error message is printed and, after destroying the communicator,
main terminates with non-zero exit status.

276

Server-Side Slice-to-C++ Mapping

8.3.1

The Ice::Application Class

The preceding structure for the main function is so common that Ice offers a
class, Ice: :Application, that encapsulates all the correct initialization and
finalization activities. The definition of the class is as follows (with some detail
omitted for now):

namespace Ice {
enum SignalPolicy { HandleSignals, NoSignalHandling };

class Application /* ... */ {
public:

#ifdef

#endif

}i
}

Application(SignalPolicy = HandleSignals) ;
virtual ~Application() ;

int main(int argc, char*[] argv);
int main(int argc, char*[] argv, const char* config);
int main(int argc, char*[] argv,
const Ice::InitializationData& id) ;
int main(int argc, char* const [] argv);
int main(int argc, char* const [] argv, const char* config
int main(int argc, char* const [] argv,

const Ice::InitializationData& id) ;
int main(const Ice::StringSeqgé&) ;
int main(const Ice::StringSeqgé&, const char* config) ;
int main(const Ice::StringSeqg,

const Ice::InitializationData& id) ;

_WIN32
int main(int argc, wchar t*[] argv);
int main(int argc, wchar t*[] argv, const char* config);
int main(int argc, wchar t*[] argv,
const Ice::InitializationData& id) ;
virtual int run(int, char*[]) = 0;

static const char* appName () ;
static CommunicatorPtr communicator() ;

!/

The intent of this class is that you specialize Ice: : Application and imple-
ment the pure virtual run method in your derived class. Whatever code you

8.3 The Server-Side main Function 277

would normally place in main goes into the run method instead. Using
Ice: :Application, our program looks as follows:

#include <Ice/Ice.h>

class MyApplication : virtual public Ice::Application {

public:
virtual int run(int, char*[]) {
// Server code here...
return O0;
!
}i
int

main (int argc, char* argv[])

{
MyApplication app;
return app.main(argc, argv) ;

}

Note that Application: :main is overloaded: you can pass a string sequence
instead of an argc/argv pair. This is useful if you need to parse application-
specific property settings on the command line (see Section 30.9.3). You also can
call main with an optional file name or an InitializationData structure
(see Section 32.3 and Section 30.9).

If you pass a configuration file name to main, the settings in this file are over-
ridden by settings in a file identified by the ICE_CONFIG environment variable
(if defined). Property settings supplied on the command line take precedence over
all other settings.

The Application: :main function does the following:

1. It installs an exception handler for Ice: : Exception. If your code fails to
handle an Ice exception, Application: :main prints the exception details
on stderr before returning with a non-zero return value.

2. It installs exception handlers for const std::string & and
const char *. This allows you to terminate your server in response to a
fatal error condition by throwing a std: : string or a string literal.
Application: :main prints the string on stderr before returning a non-
zero return value.

3. It initializes (by calling Ice: :initialize) and finalizes (by calling
Communicator: :destroy) a communicator. You can get access to the

278

Server-Side Slice-to-C++ Mapping

communicator for your server by calling the static communicator ()
member.

4. It scans the argument vector for options that are relevant to the Ice run time
and removes any such options. The argument vector that is passed to your run
method therefore is free of Ice-related options and only contains options and
arguments that are specific to your application.

5. It provides the name of your application via the static appName member
function. The return value from this call is argv [0], so you can get at
argv [0] from anywhere in your code by calling Ice: :Applica-
tion: :appName (which is usually required for error messages).

6. It creates an IceUtil: :CtrlCHandler that properly destroys the
communicator.

7. It installs a per-process logger (see Section 32.19.5) if the application has not
already configured one. The per-process logger uses the value of the
Ice.ProgramName property (see Section 30.8) as a prefix for its messages
and sends its output to the standard error channel. An application can specify
an alternate logger as described in Section 32.19.

Using Ice: :Application ensures that your program properly finalizes the
Ice run time, whether your server terminates normally or in response to an excep-
tion or signal. We recommend that all your programs use this class; doing so
makes your life easier. In addition, Ice: : Application also provides features
for signal handling and configuration that you do not have to implement yourself
when you use this class.

Using Ice: :Application on the Client Side

You can use Ice: :Application for your clients as well: simply implement a
class that derives from Ice: : Application and place the client code into its
run method. The advantage of this approach is the same as for the server side:
Ice: :Application ensures that the communicator is destroyed correctly
even in the presence of exceptions.

Catching Signals

The simple server we developed in Chapter 3 had no way to shut down cleanly:
we simply interrupted the server from the command line to force it to exit. Termi-
nating a server in this fashion is unacceptable for many real-life server applica-
tions: typically, the server has to perform some cleanup work before terminating,
such as flushing database buffers or closing network connections. This is particu-

8.3 The Server-Side main Function 279

larly important on receipt of a signal or keyboard interrupt to prevent possible
corruption of database files or other persistent data.

To make it easier to deal with signals, Ice: : Application encapsulates
the platform-independent signal handling capabilities provided by the class
IceUtil: :CtrlCHandler (see Section 31.10). This allows you to cleanly
shut down on receipt of a signal and to use the same source code regardless of the
underlying operating system and threading package:

namespace Ice {

class Application : /* ... */ {

public:
//
static void destroyOnInterrupt () ;
static void shutdownOnInterrupt () ;
static void ignoreInterrupt () ;
static void callbackOnInterrupt () ;
static void holdInterrupt () ;
static void releaseInterrupt () ;
static bool interrupted() ;

virtual void interruptCallback (int) ;
}i
}
You can use Ice: : Application under both Windows and Unix: for Unix, the
member functions control the behavior of your application for SIGINT, SIGHUP,
and SIGTERM; for Windows, the member functions control the behavior of your
application for CTRL,_C_EVENT, CTRL_ BREAK EVENT,
CTRL CLOSE EVENT, CTRL LOGOFF_ EVENT, and
CTRL SHUTDOWN EVENT.
The functions behave as follows:

® destroyOnInterrupt

This function creates an TceUtil: : Ctr1CHandler that destroys the
communicator when one of the monitored signals is raised. This is the default
behavior.

¢* shutdownOnInterrupt

This function creates an IceUtil: : CtrlCHandler that shuts down the
communicator when one of the monitored signals is raised.

®* ignoreInterrupt

This function causes signals to be ignored.

280

Server-Side Slice-to-C++ Mapping

® callbackOnInterrupt

This function configures Ice: : Application toinvoke interrupt-
Callback when a signal occurs, thereby giving the subclass responsibility
for handling the signal. Note that if the signal handler needs to terminate the
program, you must call exit (instead of exit). This prevents global
destructors from running which, depending on the activities of other threads in
the program, could cause deadlock or assertion failures.

holdInterrupt
This function causes signals to be held.
releaseInterrupt

This function restores signal delivery to the previous disposition. Any signal
that arrives after holdInterrupt was called is delivered when you call
releaseInterrupt.

interrupted

This function returns t rue if a signal caused the communicator to shut down,
false otherwise. This allows us to distinguish intentional shutdown from a

forced shutdown that was caused by a signal. This is useful, for example, for

logging purposes.

interruptCallback

A subclass overrides this function to respond to signals. The Ice run time may
call this function concurrently with any other thread. If the function raises an

exception, the Ice run time prints a warning on cerr and ignores the excep-
tion.

By default, Ice: :Application behaves as if destroyOnInterrupt was
invoked, therefore our server main function requires no change to ensure that the
program terminates cleanly on receipt of a signal. (You can disable the signal-
handling functionality of Ice: : Application by passing the enumerator
NoSignalHandling to the constructor. In that case, signals retain their default
behavior, that is, terminate the process.) However, we add a diagnostic to report
the occurrence of a signal, so our main function now looks like:

#include <Ice/Ice.h>

class MyApplication : virtual public Ice::Application {
public:

virtual int run(int, char*[]) {

// Server code here...

8.3 The Server-Side main Function 281

if (interrupted())
cerr << appName () << ": terminating" << endl;

return 0;

}i

int
main (int argc, char* argv([])

{
MyApplication app;
return app.main(argc, argv) ;

}

Note that, if your server is interrupted by a signal, the Ice run time waits for all
currently executing operations to finish. This means that an operation that updates
persistent state cannot be interrupted in the middle of what it was doing and cause
partial update problems.

Under Unix, if you handle signals with your own handler (by deriving a
subclass from Ice: :Application and calling callbackOnInterrupt),
the handler is invoked synchronously from a separate thread. This means that the
handler can safely call into the Ice run time or make system calls that are not
async-signal-safe without fear of deadlock or data corruption. Note that
Ice: :Application blocks delivery of SIGINT, SIGHUP, and SIGTERM. If
your application calls exec, this means that the child process will also ignore
these signals; if you need the default behavior of these signals in the exec’d
process, you must explicitly reset them to SIG_DFL before calling exec.

Ice::Application and Properties

Apart from the functionality shown in this section, Ice: : Application also
takes care of initializing the Ice run time with property values. Properties allow
you to configure the run time in various ways. For example, you can use proper-
ties to control things such as the thread pool size or port number for a server. We
discuss Ice properties in more detail in Chapter 30.

Limitations of Ice: :Application

Ice: :Applicationis asingleton class that creates a single communicator. If
you are using multiple communicators, you cannot use Ice: :Application.
Instead, you must structure your code as we saw in Chapter 3 (taking care to
always destroy the communicators).

282 Server-Side Slice-to-C++ Mapping

8.3.2 The Ice::Service Class

The Ice: :Application class described in Section 8.3.1 is very convenient
for general use by Ice client and server applications. In some cases, however, an
application may need to run at the system level as a Unix daemon or Windows
service. For these situations, Ice includes Ice: : Service, a singleton class that
is comparable to Ice: : Application but also encapsulates the low-level, plat-
form-specific initialization and shutdown procedures common to system services.
The Ice: : Service class is defined as follows:

namespace Ice {
class Service {
public:
Service () ;

virtual bool shutdown() ;
virtual void interrupt () ;

int main(int& argc, char* argvl],
const Ice::InitializationData&
Ice::InitializationData()) ;
int main(Ice::StringSeqg& args,
const Ice::InitializationDataé&
Ice::InitializationData()) ;

Ice: :CommunicatorPtr communicator () const;
static Service* instance() ;

bool service() const;
std::string name () const;
bool checkSystem() const;

int run(int& argc, char* argvl(],
const Ice::InitializationDataé&) ;

#ifdef _WIN32
int main(int& argc, wchar t* argvl(],
const InitializationData& =
InitializationData()) ;

void configureService (const std::string& name) ;
#else
void configureDaemon (bool changeDir,
bool closeFiles,

8.3 The Server-Side main Function 283

const std::string& pidFile) ;
#endif

virtual void handleInterrupt (int) ;

protected:
virtual bool start(int argc, char* argvl(],
int& status) = 0;
virtual void waitForShutdown () ;
virtual bool stop();
virtual Ice::CommunicatorPtr initializeCommunicator (
int& argc, char* argvl(],
const Ice::InitializationDataé&) ;

virtual void syserror (const std::string& msg) ;
virtual void error (const std::string& msg) ;
virtual void warning(const std::string& msg) ;
virtual void trace(const std::string& msg) ;
virtual void print (const std::string& msg) ;

void enablelInterrupt () ;
void disableInterrupt () ;

//
}i
}

At a minimum, an Ice application that uses the Ice: : Service class must
define a subclass and override the start member function, which is where the
service must perform its startup activities, such as processing command-line argu-
ments, creating an object adapter, and registering servants. The application’s
main function must instantiate the subclass and typically invokes its main
member function, passing the program’s argument vector as parameters. The
example below illustrates a minimal Ice: : Service subclass:

#include <Ice/Service.hs>

class MyService : public Ice::Service ({
protected:

virtual bool start (int, char*[]);
private:

Ice::0ObjectAdapterPtr adapter;
}i

bool

284

Server-Side Slice-to-C++ Mapping

MyService: :start (int argc, char* argv[], inté& status)

{

_adapter = communicator () ->createObjectAdapter ("MyAdapter") ;
_adapter->addWithUUID (new MyServantI) ;

_adapter-sactivate() ;

status = EXIT_ SUCCESS;

return true;

}

int
main (int argc, char* argv[])

{

MyService svc;
return svc.main(argc, argv) ;

}

The Service: :main member function performs the following sequence of
tasks:

1. Scans the argument vector for reserved options that indicate whether the
program should run as a system service and removes these options from the
argument vector (argc is adjusted accordingly). Additional reserved options
are supported for administrative tasks.

2. Configures the program for running as a system service (if necessary) by
invoking configureService or configureDaemon, as appropriate for
the platform.

3. Invokes the run member function and returns its result.

Note that, as for Application: :main, Service: :main is overloaded to
accept a string sequence instead of an argc/argv pair. This is useful if you need
to parse application-specific property settings on the command line (see
Section 30.9.3).

The Service: : run member function executes the service in the steps
shown below:

1. Installs an TceUtil: :CtrlCHandler (see Section 31.10) for proper
signal handling.

2. Invokes the initializeCommunicator member function to obtain a
communicator. The communicator instance can be accessed using the
communicator member function.

3. Invokes the start member function. If start returns false to indicate
failure, run destroys the communicator and returns immediately using the
exit status provided in status.

8.3 The Server-Side main Function 285

6.
7.

. Invokes the waitForShutdown member function, which should block until

shutdown is invoked.

. Invokes the st op member function. If stop returns true, run considers

the application to have terminated successfully.
Destroys the communicator.

Gracefully terminates the system service (if necessary).

If an unhandled exception is caught by Service: : run, a descriptive message is
logged, the communicator is destroyed and the service is terminated.

Ice: :Service Member Functions

The virtual member functions in Ice: : Service represent the points at which a
subclass can intercept the service activities. All of the virtual member functions
(except start) have default implementations.

® void handleInterrupt (int sig)

Invoked by the Ctr1CHandler when a signal occurs. The default imple-
mentation ignores the signal if it represents a logoff event and the
Ice.Nohup property is set to a value larger than zero, otherwise it invokes
the interrupt member function.

Ice: :CommunicatorPtr
initializeCommunicator (int & argc, char * argvl([],
const Ice::InitializationData & data)

Initializes a communicator. The default implementation invokes
Ice::initialize and passes the given arguments.

void interrupt ()

Invoked by the signal handler to indicate a signal was received. The default
implementation invokes the shutdown member function.

bool shutdown ()

Causes the service to begin the shutdown process. The default implementation
invokes shutdown on the communicator. The subclass must return true if
shutdown was started successfully, and false otherwise.

bool start (int argc, char * argv[], int & status)

Allows the subclass to perform its startup activities, such as scanning the
provided argument vector for recognized command-line options, creating an
object adapter, and registering servants. The subclass must return true if

286

Server-Side Slice-to-C++ Mapping

startup was successful, and £alse otherwise. The subclass can set an exit
status via the status parameter. This status is returned by main.

bool stop ()

Allows the subclass to clean up prior to termination. The default implementa-
tion does nothing but return true. The subclass must return true if the
service has stopped successfully, and false otherwise.

void syserror (const std::string & msg)
void error (const std::string & msg)
void warning(const std::string & msg)
void trace(const std::string & msg)
void print (const std::string & msg)

Convenience functions for logging messages to the communicator’s logger.
The syserror member function includes a description of the system’s
current error code.

void waitForShutdown ()

Waits indefinitely for the service to shut down. The default implementation
invokes waitForShutdown on the communicator.

The non-virtual member functions shown in the class definition are described
below:

® bool checkSystem() const

Returns true if the operating system supports Windows services or Unix
daemons. This function returns false on Windows 95/98/ME.

Ice: :CommunicatorPtr communicator () const

Returns the communicator used by the service, as created by initial-
izeCommunicator.

void configureDaemon (bool chdir, bool close,
const std::string & pidFile)

Configures the program to run as a Unix daemon. The chdir parameter
determines whether the daemon changes its working directory to the root
directory. The close parameter determines whether the daemon closes
unnecessary file descriptors (i.e., stdin, stdout, etc.). If a non-empty string is
provided in the pidFile parameter, the daemon writes its process ID to the
given file.

8.3 The Server-Side main Function 287

® void configureService (const std::string & name)
Configures the program to run as a Windows service with the given name.
® void disableInterrupt ()

Disables the signal handling behavior in Ice: : Service. When disabled,
signals are ignored.

® void enableInterrupt ()

Enables the signal handling behavior in Ice: : Service. When enabled, the
occurrence of a signal causes the handleInterrupt member function to
be invoked.

® static Service * instance()
Returns the singleton Ice: : Service instance.

® int main(int & argc, char * argv[],
const Ice::InitializationData & data
Ice::InitializationData())
int main(Ice::StringSeg& args,
consgst Ice::InitializationData& =
Ice::InitializationData()) ;
int main(int & argc, wchar t * argv([],
const Ice::InitializationData & data
Ice::InitializationData())

The primary entry point of the Ice: : Service class. The tasks performed
by this function are described earlier in this section. The function returns
EXIT SUCCESS for success, EXIT FAILURE for failure. For Windows,
this function is overloaded to allow you to pass a wchar t argument vector.

® std::string name () const

Returns the name of the service. If the program is running as a Windows
service, the return value is the Windows service name, otherwise it returns the
value of argv [0].

® int run(int & argc, char * argvl([],
const Ice::InitializationData & data)

Alternative entry point for applications that prefer a different style of service
configuration. The program must invoke configureService (Windows)
or configureDaemon (Unix) in order to run as a service. The tasks
performed by this function are described earlier in this section. The function
normally returns EXIT SUCCESS or EXIT FAILURE, but the start
method can also supply a different value via its status argument.

288

Server-Side Slice-to-C++ Mapping

® bool service() const

Returns true if the program is running as a Windows service or Unix daemon,
or false otherwise.

Unix Daemons

On Unix platforms, Ice: : Service recognizes the following command-line
options:

* - -daemon

Indicates that the program should run as a daemon. This involves the creation
of a background child process in which Service: :main performs its tasks.
The parent process does not terminate until the child process has successfully
invoked the start member function’. Unless instructed otherwise,

Ice: :Service changes the current working directory of the child process
to the root directory, and closes all unnecessary file descriptors. Note that the
file descriptors are not closed until after the communicator is initialized,
meaning standard input, standard output, and standard error are available for
use during this time. For example, the IceSSL plug-in may need to prompt for
a passphrase on standard input, or Ice may print the child’s process id on stan-
dard output if the property Ice.PrintProcessId is set.

¢ --pidfile FILE

This option writes the process ID of the service into the specified file. (This
option requires - -daemon.)

® --noclose

Prevents Ice: : Service from closing unnecessary file descriptors. This
can be useful during debugging and diagnosis because it provides access to the
output from the daemon’s standard output and standard error.

® --nochdir

Prevents Ice: : Service from changing the current working directory.

The - -noclose and - -nochdir options can only be specified in conjunction
with - -daemon. These options are removed from the argument vector that is
passed to the start member function.

2. This behavior avoids the uncertainty often associated with starting a daemon from a shell script,

because it ensures that the command invocation does not complete until the daemon is ready to
receive requests.

8.3 The Server-Side main Function 289

Windows Services
On Windows, Ice: : Service recognizes the following command-line options:
® --service NAME

Run as a Windows service named NAME, which must already be installed.
This option is removed from the argument vector that is passed to the start
member function.

Installing and configuring a Windows service is outside the scope of the
Ice: :Service class. Ice includes a utility for installing its services (see
Appendix H) which you can use as a model for your own applications.

The Ice: : Service class supports the Windows service control codes
SERVICE CONTROL INTERROGATE and SERVICE CONTROL_STOP. Upon
receipt of SERVICE_CONTROL_STOP, Ice: : Service invokes the shut -
down member function.

Logging Considerations
A service that uses a custom logger has several ways of configuring it:
® as a process-wide logger (see Section 32.19.5),
® inthe InitializationData argument that is passed to main,
* by overriding the initializeCommunicator member function.

On Windows, Ice: : Service installs its own logger that uses the Windows
Application event log if no custom logger is defined. The source name for the
event log is the service’s name unless a different value is specified using the prop-
erty Ice.EventLog. Source (see Appendix D).

On Unix, the default Ice logger (which logs to the standard error output) is
used when no other logger is configured. For daemons, this is not appropriate
because the output will be lost. To change this, you can either implement a custom
logger or set the Ice .UseSyslog property, which selects a logger implementa-
tion that logs to the syslog facility. Alternatively, you can set the
Ice.LogFile property to write log messages to a file.

Note that Tce: : Service may encounter errors before the communicator is
initialized. In this situation, Ice: : Service uses its default logger unless a
process-wide logger is configured. Therefore, even if a failing service is config-
ured to use a different logger implementation, you may find useful diagnostic
information in the Application event log (on Windows) or sent to standard
error (on Unix).

290

Server-Side Slice-to-C++ Mapping

8.4 Mapping for Interfaces

8.4.1

The server-side mapping for interfaces provides an up-call API for the Ice run
time: by implementing virtual functions in a servant class, you provide the hook
that gets the thread of control from the Ice server-side run time into your applica-
tion code.

Skeleton Classes

On the client side, interfaces map to proxy classes (see Section 6.11). On the
server side, interfaces map to skeleton classes. A skeleton is a class that has a pure
virtual member function for each operation on the corresponding interface. For
example, consider the Slice definition for the Node interface we defined in
Chapter 5 once more:

module Filesystem {
interface Node {
idempotent string name();
1
// ...
};

The Slice compiler generates the following definition for this interface:

namespace Filesystem {

class Node : virtual public Ice::0Object ({

public:
virtual std::string name (const Ice::Currenté& =
Ice::Current()) = 0;
//
}i
//

}

For the moment, we will ignore a number of other member functions of this class.
The important points to note are:

* As for the client side, Slice modules are mapped to C++ namespaces with the
same name, so the skeleton class definition is nested in the namespace File-
system.

* The name of the skeleton class is the same as the name of the Slice interface
(Node).

8.4 Mapping for Interfaces 291

8.4.2

* The skeleton class contains a pure virtual member function for each operation
in the Slice interface.

* The skeleton class is an abstract base class because its member functions are
pure virtual.

® The skeleton class inherits from Ice: : Object (which forms the root of the
Ice object hierarchy).

Servant Classes

In order to provide an implementation for an Ice object, you must create a servant
class that inherits from the corresponding skeleton class. For example, to create a
servant for the Node interface, you could write:

#include <Filesystem.h> // Slice-generated header

class NodeI : public virtual Filesystem::Node ({
public:

NodelI (const std::stringé&) ;

virtual std::string name (const Ice::Currenté&) ;
private:

std::string name;

}i

By convention, servant classes have the name of their interface with an I-suffix,
so the servant class for the Node interface is called NodeI. (This is a convention
only: as far as the Ice run time is concerned, you can chose any name you prefer
for your servant classes.)

Note that NodeT inherits from Filesystem: : Node, that is, it derives from
its skeleton class. It is a good idea to always use virtual inheritance when defining
servant classes. Strictly speaking, virtual inheritance is necessary only for servants
that implement interfaces that use multiple inheritance; however, the virtual
keyword does no harm and, if you add multiple inheritance to an interface hier-
archy half-way through development, you do not have to go back and add a
virtual keyword to all your servant classes.

As far as Ice is concerned, the NodeT class must implement only a single
member function: the pure virtual name function that it inherits from its skeleton.
This makes the servant class a concrete class that can be instantiated. You can add
other member functions and data members as you see fit to support your imple-
mentation. For example, in the preceding definition, we added a _name member
and a constructor. Obviously, the constructor initializes the _name member and
the name function returns its value:

292

Server-Side Slice-to-C++ Mapping

NodeI: :NodeI (const std::string& name) : name (name)

{
}

std::string
NodeI: :name (const Ice::Currenté&) const

{
}

return _name;

Normal and idempotent Operations

The name member function of the NodeTI skeleton on page 291 is not a const
member function. However, given that the operation does not modify the state of
its object, it really should be a const member function. We can achieve this by
adding the [“cpp:const”] metadata directive. For example:

interface Example {
void normalOp();

idempotent void idempotentOp();

["cpp:const"]
idempotent void readonlyOp();
};

The skeleton class for this interface looks like this:

class Example : virtual public Ice::0Object
public:
virtual void normalOp (const Ice::Currenté&
= Ice::Current())
virtual void idempotentOp (const Ice::Currenté&

0;

= Ice::Current()) = 0;
virtual void readonlyOp (const Ice::Currenté&
= Ice::Current()) const = 0;

//
}i

Note that readon1yOp is mapped as a const member function due to the
["cpp:const"] metadata directive; normal and idempotent operations
(without the metadata directive) are mapped as ordinary, non-const member
functions.

8.5 Parameter Passing 293

8.5

Parameter Passing

For each parameter of a Slice operation, the C++ mapping generates a corre-
sponding parameter for the virtual member function in the skeleton. In addition,
every operation has an additional, trailing parameter of type Ice: : Current.
For example, the name operation of the Node interface has no parameters, but the
name member function of the Node skeleton class has a single parameter of type
Ice: :Current. We explain the purpose of this parameter in Section 32.6 and
will ignore it for now.

Parameter passing on the server side follows the rules for the client side:
* in-parameters are passed by value or const reference.
® out-parameters are passed by reference.
* return values are passed by value

To illustrate the rules, consider the following interface that passes string parame-
ters in all possible directions:

module M {
interface Example {
string op(string sin, out string sout);
b
b

The generated skeleton class for this interface looks as follows:

namespace M {
class Example : virtual public ::Ice::Object {
public:
virtual std::string
op (const std::string&, std::stringg,
const Ice::Current& = Ice::Current()) = 0;
//
}i
}

As you can see, there are no surprises here. For example, we could implement op
as follows:

std::string
ExampleI: :op(const std::string& sin,
std: :string& sout,
const Ice::Currenté&)

294

Server-Side Slice-to-C++ Mapping

8.6

cout << sin << endl; // In parameters are initialized
sout = "Hello World!"; // Assign out parameter
return "Done"; // Return a string

}

This code is in no way different from what you would normally write if you were
to pass strings to and from a function; the fact that remote procedure calls are
involved does not impact on your code in any way. The same is true for parame-
ters of other types, such as proxies, classes, or dictionaries: the parameter passing
conventions follow normal C++ rules and do not require special-purpose API calls
Or memory management.

Raising Exceptions

To throw an exception from an operation implementation, you simply instantiate
the exception, initialize it, and throw it. For example:

void
Filesystem::FileI::write(const Filesystem::Lines& text,
const Ice::Currenté&)

{
// Try to write the file contents here...
// Assume we are out of space...
if (error) {
Filesystem: :GenericError e;
e.reason = "file too large";
throw e;
!
}i

No memory management issues arise in the presence of exceptions.

Note that the Slice compiler never generates exception specifications for oper-
ations, regardless of whether the corresponding Slice operation definition has an
exception specification or not. This is deliberate: C++ exception specifications do
not add any value and are therefore not used by the Ice C++ mapping. (See [22]
for an excellent treatment of the problems associated with C++ exception specifi-
cations.)

If you throw an arbitrary C++ exception (such as an int or other unexpected
type), the Ice run time catches the exception and then returns an UnknownExcep-
tion to the client. Similarly, if you throw an “impossible” user exception (a user

8.7 Object Incarnation 295

8.7

exception that is not listed in the exception specification of the operation), the
client receives an UnknownUserException.

If you throw a run-time exception, such as MemoryLimitException, the client
receives an UnknownLocalException. For that reason, you should never throw
system exceptions from operation implementations. If you do, all the client will
see is an UnknownLocalException, which does not tell the client anything useful.

Object Incarnation

8.7.1

Having created a servant class such as the rudimentary NodeT class in

Section 8.4.2, you can instantiate the class to create a concrete servant that can
receive invocations from a client. However, merely instantiating a servant class is
insufficient to incarnate an object. Specifically, to provide an implementation of
an Ice object, you must follow the following steps:

1. Instantiate a servant class.
2. Create an identity for the Ice object incarnated by the servant.
3. Inform the Ice run time of the existence of the servant.

4. Pass a proxy for the object to a client so the client can reach it.

Instantiating a Servant
Instantiating a servant means to allocate an instance on the heap:

NodePtr servant = new NodeI ("Fred") ;

This code creates a new NodeI instance on the heap and assigns its address to a
smart pointer of type NodePtr (see also page 238). This works because NodeI
is derived from Node, so a smart pointer of type NodePtr can also look after an
instance of type NodeI. However, if we want to invoke a member function of the
derived NodeT class at this point, we have a problem: we cannot access member
functions of the derived NodeT class through a NodePtr smart pointer, only
member functions of Node base class. (The C++ type rules prevent us from

3. There are three system exceptions that are not changed to UnknownLocalException when
returned to the client: ObjectNotExistException, OperationNotExistException, and
FacetNotExistException. We discuss these exceptions in more detail in Section 4.10.4 and
Chapter 33.

296

Server-Side Slice-to-C++ Mapping

8.7.2

accessing a member of a derived class through a pointer to a base class.) To get
around this, we can modify the code as follows:

typedef IceUtil::Handle<Nodel> NodeIPtr;
NodeIPtr servant = new NodeI ("Fred") ;

This code makes use of the smart pointer template we presented in Section 6.14.6
by defining NodeIPtr as a smart pointer to NodeI instances. Whether you use
a smart pointer of type NodePtr or NodeIPtr depends solely on whether you
want to invoke a member function of the NodeI derived class; if you only want to
invoke member functions that are defined in the Node skeleton base class, it is
sufficient to use a NodePtr and you need not define the NodeIPtr type.

Whether you use NodePtr or NodeIPtr, the advantages of using a smart
pointer class should be obvious from the discussion in Section 6.14.6: they make
it impossible to accidentally leak memory.

Creating an Identity

Each Ice object requires an identity. That identity must be unique for all servants
using the same object adapter.4 An Ice object identity is a structure with the
following Slice definition:

module Ice {
struct Identity {
string name;
string category;
b
// ...
};

The full identity of an object is the combination of both the name and category
fields of the Identity structure. For now, we will leave the category field as the
empty string and simply use the name field. (See Section 32.7 for a discussion of
the category field.)

To create an identity, we simply assign a key that identifies the servant to the
name field of the Identity structure:
Ice::Identity id;
id.name = "Fred"; // Not unique, but good enough for now

4. The Ice object model assumes that all objects (regardless of their adapter) have a globally unique
identity. See Chapter 34 for further discussion.

8.7 Object Incarnation 297

8.7.3 Activating a Servant

Merely creating a servant instance does nothing: the Ice run time becomes aware
of the existence of a servant only once you explicitly tell the object adapter about
the servant. To activate a servant, you invoke the add operation on the object
adapter. Assuming that we have access to the object adapter in the adapter
variable, we can write:

_adapter->add(servant, id);

Note the two arguments to add: the smart pointer to the servant and the object
identity. Calling add on the object adapter adds the servant pointer and the
servant’s identity to the adapter’s servant map and links the proxy for an Ice object
to the correct servant instance in the server’s memory as follows:

1. The proxy for an Ice object, apart from addressing information, contains the
identity of the Ice object. When a client invokes an operation, the object iden-
tity is sent with the request to the server.

2. The object adapter receives the request, retrieves the identity, and uses the
identity as an index into the servant map.

3. If a servant with that identity is active, the object adapter retrieves the servant
pointer from the servant map and dispatches the incoming request into the
correct member function on the servant.

Assuming that the object adapter is in the active state (see Section 32.4.5), client
requests are dispatched to the servant as soon as you call add.

Servant Life Time and Reference Counts

Putting the preceding points together, we can write a simple function that instanti-
ates and activates one of our NodeI servants. For this example, we use a simple
helper function called activateServant that creates and activates a servant
with a given identity:

void
activateServant (const string& name)
{
NodePtr servant = new Nodel (name) ; // Refcount == 1
Ice::Identity id;
id.name = name;
_adapter-sadd(servant, id); // Refcount == 2
} // Refcount == 1

Note that we create the servant on the heap and that, once activateServant
returns, we lose the last remaining handle to the servant (because the servant

298

Server-Side Slice-to-C++ Mapping

8.74

variable goes out of scope). The question is, what happens to the heap-allocated
servant instance? The answer lies in the smart pointer semantics:

* When the new servant is instantiated, its reference count is initialized to O.

* Assigning the servant’s address to the servant smart pointer increments the
servant’s reference count to 1.

® Calling add passes the servant smart pointer to the object adapter which
keeps a copy of the handle internally. This increments the reference count of
the servant to 2.

* When activateServant returns, the destructor of the servant variable
decrements the reference count of the servant to 1.

The net effect is that the servant is retained on the heap with a reference count of 1
for as long as the servant is in the servant map of its object adapter. (If we deacti-
vate the servant, that is, remove it from the servant map, the reference count drops
to zero and the memory occupied by the servant is reclaimed; we discuss these life
cycle issues in Chapter 34.)

UUIDs as Identities

The Ice object model assumes that object identities are globally unique. One way
of ensuring that uniqueness is to use UUIDs (Universally Unique Identifiers) [14]
as identities. The TceUt 11 namespace contains a helper function to create such
identities:

#include <IceUtil/UUID.h>
#include <iostream>

using namespace std;

int
main ()

{
}

When executed, this program prints a unique string such as
5029a22c-e333-4f87-86bl-cd5e0fcce509. Each call to genera-
teUUID creates a string that differs from all previous ones.” You can use a UUID
such as this to create object identities. For convenience, the object adapter has an
operation addwithUUID that generates a UUID and adds a servant to the servant

cout << IceUtil::generateUUID() << endl;

8.7 Object Incarnation 299

8.7.5

map in a single step. Using this operation, we can rewrite the code on page 297
like this:

void
activateServant (const string& name)

{

NodePtr servant = new Nodel (name) ;
_adapter->addWithUUID (servant) ;

Creating Proxies

Once we have activated a servant for an Ice object, the server can process
incoming client requests for that object. However, clients can only access the
object once they hold a proxy for the object. If a client knows the server’s address
details and the object identity, it can create a proxy from a string, as we saw in our
first example in Chapter 3. However, creation of proxies by the client in this
manner is usually only done to allow the client access to initial objects for boot-
strapping. Once the client has an initial proxy, it typically obtains further proxies
by invoking operations.

The object adapter contains all the details that make up the information in a
proxy: the addressing and protocol information, and the object identity. The Ice
run time offers a number of ways to create proxies. Once created, you can pass a
proxy to the client as the return value or as an out-parameter of an operation invo-
cation.

Proxies and Servant Activation

The add and addwithUUID servant activation operations on the object adapter
return a proxy for the corresponding Ice object. This means we can write:

typedef IceUtil::Handle<Nodel> NodeIPtr;
NodeIPtr servant = new Nodel (name) ;
NodePrx proxy = NodePrx::uncheckedCast (
_adapter->addWithUUID (servant)) ;

// Pass proxy to client...

5. Well, almost: eventually, the UUID algorithm wraps around and produces strings that repeat
themselves, but this will not happen until approximately the year 3400.

300

Server-Side Slice-to-C++ Mapping

8.8

Here, addwi thUUID both activates the servant and returns a proxy for the Ice
object incarnated by that servant in a single step.

Note that we need to use an uncheckedCast here because addWithUUID
returns a proxy of type Ice: :ObjectPrx.

Direct Proxy Creation
The object adapter offers an operation to create a proxy for a given identity:

module Ice {
Tocal interface ObjectAdapter {
Objectx createProxy(Identity id);
// ...
};
};

Note that createProxy creates a proxy for a given identity whether a servant is
activated with that identity or not. In other words, proxies have a life cycle that is
quite independent from the life cycle of servants:

Ice::Identity id;

id.name = IceUtil::generateUUID() ;

ObjectPrx o = _adapter->createProxy (id) ;

This creates a proxy for an Ice object with the identity returned by genera-
teUUID. Obviously, no servant yet exists for that object so, if we return the proxy
to a client and the client invokes an operation on the proxy, the client will receive
an ObjectNotExistException. (We examine these life cycle issues in more detail
in Chapter 34.)

Asynchronous Method Dispatch (AMD)

The number of simultaneous synchronous requests a server is capable of
supporting is determined by the number of threads in the server’s thread pool (see
Section 32.10). If all of the threads are busy dispatching long-running operations,
then no threads are available to process new requests and therefore clients may
experience an unacceptable lack of responsiveness.

Asynchronous Method Dispatch (AMD), the server-side equivalent of AMI
(see Section 6.15), addresses this scalability issue. Using AMD, a server can
receive a request but then suspend its processing in order to release the dispatch
thread as soon as possible. When processing resumes and the results are available,

8.8 Asynchronous Method Dispatch (AMD) 301

8.8.1

the server sends a response explicitly using a callback object provided by the Ice
run time.

AMD is transparent to the client, that is, there is no way for a client to distin-
guish a request that, in the server, is processed synchronously from a request that
is processed asynchronously.

In practical terms, an AMD operation typically queues the request data (i.e.,
the callback object and operation arguments) for later processing by an applica-
tion thread (or thread pool). In this way, the server minimizes the use of dispatch
threads and becomes capable of efficiently supporting thousands of simultaneous
clients.

An alternate use case for AMD is an operation that requires further processing
after completing the client’s request. In order to minimize the client’s delay, the
operation returns the results while still in the dispatch thread, and then continues
using the dispatch thread for additional work.

Enabling AMD with Metadata

To enable asynchronous dispatch, you must add an ["amd"] metadata directive to
your Slice definitions. The directive applies at the interface and the operation
level. If you specify ["amd"] at the interface level, all operations in that interface
use asynchronous dispatch; if you specify ["amd"] for an individual operation,
only that operation uses asynchronous dispatch. In either case, the metadata direc-
tive replaces synchronous dispatch, that is, a particular operation implementation
must use synchronous or asynchronous dispatch and cannot use both.

Consider the following Slice definitions:

["amd"] interface I {
bool isvValid();
float computeRate();

};

interface J {
["amd"] void startProcess();
int endProcess();

};

In this example, both operations of interface I use asynchronous dispatch,
whereas, for interface J, startProcess uses asynchronous dispatch and endPro-
cess uses synchronous dispatch.

Specifying metadata at the operation level (rather than at the interface or class
level) minimizes the amount of generated code and, more importantly, minimizes

302 Server-Side Slice-to-C++ Mapping
complexity: although the asynchronous model is more flexible, it is also more
complicated to use. It is therefore in your best interest to limit the use of the asyn-
chronous model to those operations that need it, while using the simpler synchro-
nous model for the rest.

8.8.2 AMD Mapping

The C++ mapping emits the following code for each AMD operation:

1. A callback class used by the implementation to notify the Ice run time about
the completion of an operation. The name of this class is formed using the
pattern AMD class op. For example, an operation named foo defined in
interface I results in a class named AMD I foo. The class is generated in the
same scope as the interface or class containing the operation. Several methods
are provided:

void ice_response (<params>) ;

The ice response method allows the server to report the successful
completion of the operation. If the operation has a non-void return type, the
first parameter to ice_response is the return value. Parameters corre-
sponding to the operation’s out parameters follow the return value, in the
order of declaration.

void ice exception(const std::exception &);

This version of ice exception allows the server to raise any standard
exception, Ice run-time exception, or Ice user exception.

void ice exception()

This version of ice exception allows the server to report an UnknownEx-
ception.

Neither ice _responsenor ice exception throw any exceptions to the
caller.

2. The dispatch method, whose name has the suffix async. This method has a
void return type. The first parameter is a smart pointer to an instance of the
callback class described above. The remaining parameters comprise the in-
parameters of the operation, in the order of declaration.

For example, suppose we have defined the following operation:

8.8 Asynchronous Method Dispatch (AMD) 303

8.8.3

interface I {
["amd"] int foo(short s, out long 1);

¥
The callback class generated for operation foo is shown below:

class AMD I foo : public ... {

public:
void ice response (Ice::Int, Ice::Long);
void ice exception(const std::exceptioné&) ;
void ice_ exception() ;

}i

The dispatch method for asynchronous invocation of operation foo is generated as
follows:

void foo async(const AMD I fooPtré&, Ice::Short);

Exceptions

There are two processing contexts in which the logical implementation of an
AMD operation may need to report an exception: the dispatch thread (the thread
that receives the invocation), and the response thread (the thread that sends the
response).6 Although we recommend that the callback object be used to report all
exceptions to the client, it is legal for the implementation to raise an exception
instead, but only from the dispatch thread.

As you would expect, an exception raised from a response thread cannot be
caught by the Ice run time; the application’s run-time environment determines
how such an exception is handled. Therefore, a response thread must ensure that it
traps all exceptions and sends the appropriate response using the callback object.
Otherwise, if a response thread is terminated by an uncaught exception, the
request may never be completed and the client might wait indefinitely for a
response.

Whether raised in a dispatch thread or reported via the callback object, user
exceptions are validated as described in Section 4.10.2, and local exceptions may
undergo the translation described in Section 4.10.4.

6. These are not necessarily two different threads: it is legal to send the response from the dispatch
thread.

304

Server-Side Slice-to-C++ Mapping

8.8.4 Example

To demonstrate the use of AMD in Ice, let us define the Slice interface for a
simple computational engine:

module Demo {
sequence<float> Row;
sequence<Row> Grid;

exception RangeError {};

interface Model {
["amd"] Grid interpolate(Grid data, float factor)
throws RangeError;
1
};

Given a two-dimensional grid of floating point values and a factor, the interpo-
Tate operation returns a new grid of the same size with the values interpolated in
some interesting (but unspecified) way.

Our servant class derives from Demo : : Model and supplies a definition for
the interpolate_ async method:

class ModelI : virtual public Demo: :Model,
virtual public IceUtil::Mutex
public:
virtual void interpolate_async(
const Demo::AMD Model interpolatePtrg,
const Demo: :Gridég,
Ice::Float,
const Ice::Currenté&) ;

private:
std::list<JobPtr> jobs;
}i

The implementation of interpolate async uses synchronization to safely
record the callback object and arguments in a Job that is added to a queue:

void Modell::interpolate async (
const Demo::AMD Model interpolatePtr& cb,
const Demo: :Grid& data,
Ice::Float factor,
const Ice::Current& current)

8.8 Asynchronous Method Dispatch (AMD) 305

IceUtil: :Mutex: :Lock sync(*this);
JobPtr job = new Job(cb, data, factor);
__Jjobs.push back (job) ;

}

After queuing the information, the operation returns control to the Ice run time,
making the dispatch thread available to process another request. An application
thread removes the next Job from the queue and invokes execute to perform
the interpolation. Job is defined as follows:

class Job : public IceUtil::Shared ({
public:
Job (
const Demo::AMD Model interpolatePtrg,
const Demo: :Gridé&,
Ice::Float) ;
void execute() ;

private:
bool interpolateGrid() ;

Demo: : AMD Model interpolatePtr cb;
Demo: :Grid grid;
Ice::Float _factor;

typedef IceUtil::Handle<Job> JobPtr;

The implementation of execute uses interpolateGrid (not shown) to
perform the computational work:

Job: :Job (
const Demo::AMD Model interpolatePtr& cb,
const Demo::Grid& grid,
Ice::Float factor)
_cb(cb), grid(grid), _factor(factor)
{
}

void Job: :execute ()

{

if (!interpolateGrid()) {
_cb->ice exception(Demo: :RangeError()) ;
return;

}

_cb->ice response(grid) ;

306

Server-Side Slice-to-C++ Mapping

8.9

If interpolateGridreturns false, then ice exception is invoked to
indicate that a range error has occurred. The return statement following the call
to ice _exception isnecessary because ice exception does not throw an
exception; it only marshals the exception argument and sends it to the client.

If interpolation was successful, ice response is called to send the modi-
fied grid back to the client.

Summary

This chapter presented the server-side C++ mapping. Because the mapping for
Slice data types is identical for clients and servers, the server-side mapping only
adds a few additional mechanism to the client side: a small API to initialize and
finalize the run time, plus a few rules for how to derive servant classes from skele-
tons and how to register servants with the server-side run time.

Even though the examples in this chapter are very simple, they accurately
reflect the basics of writing an Ice server. Of course, for more sophisticated
servers (which we discuss in Chapter 32), you will be using additional APIs, for
example, to improve performance or scalability. However, these APIs are all
described in Slice, so, to use these APIs, you need not learn any C++ mapping
rules beyond those we described here.

Chapter 9
Developing a File System Server in
C++

9.1

Chapter Overview

9.2

In this chapter, we present the source code for a C++ server that implements the
file system we developed in Chapter 5 (see Chapter 7 for the corresponding
client). The code we present here is fully functional, apart from the required inter-
locking for threads. (We examine threading issues in detail in Chapter 31.)

Implementing a File System Server

We have now seen enough of the server-side C++ mapping to implement a server
for the file system we developed in Chapter 5. (You may find it useful to review
the Slice definition for our file system in Section 5 before studying the source
code.)

Our server is composed of two source files:
¢ Server.cpp
This file contains the server main program.
® FilesystemI.cpp
This file contains the implementation for the file system servants.

307

308

Developing a File System Server in C++

9.2.1

The Server main Program

Our server main program, in the file Server. cpp, uses the

Ice: :Application class we discussed in Section 8.3.1. The run method
installs a signal handler, creates an object adapter, instantiates a few servants for
the directories and files in the file system, and then activates the adapter. This
leads to a main program as follows:

#include <Ice/Ice.h>
#include <FilesystemI.h>

using namespace std;
using namespace Filesystem;

class FilesystemApp : virtual public Ice::Application {
public:

virtual int run(int, char*[]) {
// Terminate cleanly on receipt of a signal
//

shutdownOnInterrupt () ;

// Create an object adapter.
//
Ice: :0bjectAdapterPtr adapter =
communicator () ->createObjectAdapterWithEndpoints (
"SimpleFilesystem", "default -p 10000");

// Create the root directory (with name "/" and no parent)
//
DirectoryIPtr root =
new DirectoryI (communicator (), "/", 0);
root->activate (adapter) ;

// Create a file called "README" in the root directory
//
FileIPtr file = new Filel (communicator (), "README", root) ;
Lines text;
text.push_back ("This file system contains "
"a collection of poetry.");
file->write(text) ;
file->activate (adapter) ;

// Create a directory called "Coleridge"
// in the root directory

//

DirectoryIPtr coleridge =

9.2 Implementing a File System Server

309

}i

}i

int

new DirectoryI (communicator (), "Coleridge", root) ;
coleridge->activate (adapter) ;

// Create a file called "Kubla_Khan"
// in the Coleridge directory

//
file = new FileI (communicator (), "Kubla Khan", coleridge) ;
text.erase(text.begin(), text.end());

text.push back("In Xanadu did Kubla Khan") ;
text.push back ("A stately pleasure-dome decree:");
text.push back ("Where Alph, the sacred river, ran");
text.push back ("Through caverns measureless to man") ;
text.push back ("Down to a sunless sea.");

file->write (text) ;

file->activate (adapter) ;

// All objects are created, allow client requests now

!/

adapter->activate() ;

// Wait until we are done
//
communicator () ->waitForShutdown () ;
if (interrupted()) {
cerr << appName ()
<< ": received signal, shutting down" << endl;

return 0;

main (int argc, char* argv([])

{

FilesystemApp app;
return app.main(argc, argv) ;

}

There is quite a bit of code here, so let us examine each section in detail:

#include <FilesystemI.h>
#include <Ice/Application.hs>

using namespace std;
using namespace Filesystem;

310

Developing a File System Server in C++

The code includes the header file FilesystemI.h (see page 319). That file
includes Ice/Ice.h as well as the header file that is generated by the Slice
compiler, Filesystem. h. Because we are using Ice: :Application, we
need to include Ice/Application.h as well.

Two using declarations, for the namespaces std and Filesystem, permit
us to be a little less verbose in the source code.

The next part of the source code is the definition of FilesystemApp, which
derives from Ice: :Application and contains the main application logic in
its run method:

class FilesystemApp : virtual public Ice::Application {

public:
virtual int run(int, char*[]) {
// Terminate cleanly on receipt of a signal
//

shutdownOnInterrupt () ;

// Create an object adapter.

//
Ice: :0ObjectAdapterPtr adapter =
communicator () ->createObjectAdapterWithEndpoints (
"SimpleFilesystem", "default -p 10000");

// Create the root directory (with name "/" and no parent)
//
DirectoryIPtr root =
new DirectoryI (communicator (), "/", 0);
root->activate (adapter) ;

// Create a file called "README" in the root directory
//
FileIPtr file = new FileI (communicator (), "README", root) ;
Lines text;
text.push back ("This file system contains "
"a collection of poetry.");
file->write (text) ;
file->activate (adapter) ;

// Create a directory called "Coleridge"
// in the root directory
//
DirectoryIPtr coleridge =
new DirectoryI (communicator (), "Coleridge", root) ;
coleridge->activate (adapter) ;

9.2 Implementing a File System Server 311

}i

}i

// Create a file called "Kubla_ Khan"
// in the Coleridge directory

//
file = new FileI (communicator (), "Kubla Khan", coleridge) ;
text.erase (text.begin(), text.end()) ;

text.push back ("In Xanadu did Kubla Khan") ;
text.push back ("A stately pleasure-dome decree:");
text.push back ("Where Alph, the sacred river, ran");
text.push back ("Through caverns measureless to man") ;
text.push back("Down to a sunless sea.");

file->write (text) ;

file->activate (adapter) ;

// Bll objects are created, allow client requests now
//

adapter-sactivate() ;

// Wait until we are done

//
communicator () ->waitForShutdown () ;
if (interrupted()) {
cerr << appName ()
<< ": received signal, shutting down" << endl;

return O;

Much of this code is boiler plate that we saw previously: we create an object
adapter, and, towards the end, activate the object adapter and call waitFor-
Shutdown.

312 Developing a File System Server in C++

The interesting part of the code follows the adapter creation: here, the server
instantiates a few nodes for our file system to create the structure shown in
Figure 9.1.

O = Directory RootDir
@ -Fi

Coleridge README

Kubla_Khan

Figure 9.1. A small file system.

As we will see shortly, the servants for our directories and files are of type
DirectoryI and Filel, respectively. The constructor for either type of
servant accepts three parameters: the communicator, the name of the directory or
file to be created, and a handle to the servant for the parent directory. (For the root
directory, which has no parent, we pass a null parent handle.) Thus, the statement

DirectoryIPtr root = new DirectoryI (communicator(), "/", 0);

creates the root directory, with the name " /" and no parent directory. Note that
we use the smart pointer class we discussed in Section 6.14.6 to hold the return
value from new; that way, we avoid any memory management issues. The types
DirectoryIPtr and FileIPtr are defined as follows in a header file File-
systemI.h (see page 319):

typedef IceUtil::Handle<DirectoryI> DirectoryIPtr;
typedef IceUtil::Handle<FileI> FileIPtr;

Here is the code that establishes the structure in Figure 9.1:

// Create the root directory (with name "/" and no parent)
//
DirectoryIPtr root =
new DirectoryI (communicator(), "/", 0);
root->activate (adapter) ;

// Create a file called "README" in the root directory
//
FileIPtr file = new FileI (communicator (), "README", root) ;
Lines text;
text.push_back ("This file system contains "
"a collection of poetry.");

9.2 Implementing a File System Server 313

file->write (text) ;
file->activate (adapter) ;

// Create a directory called "Coleridge"
// in the root directory
//
DirectoryIPtr coleridge =
new DirectoryI (communicator (), "Coleridge", root) ;
coleridge->activate (adapter) ;

// Create a file called "Kubla Khan"
// in the Coleridge directory

//
file = new FileI(communicator (), "Kubla Khan", coleridge) ;
text.erase(text.begin(), text.end());

text.push back("In Xanadu did Kubla Khan") ;

text.push back("A stately pleasure-dome decree:");
text.push back ("Where Alph, the sacred river, ran");
text.push back ("Through caverns measureless to man") ;
text.push back ("Down to a sunless sea.");

file->write (text) ;

file->activate (adapter) ;

We first create the root directory and a file README within the root directory.
(Note that we pass the handle to the root directory as the parent pointer when we
create the new node of type FileI.)

After creating each servant, the code calls activate on the servant. (We will
see the definition of this member function shortly.) The act ivate member
function adds the servant to the ASM.

The next step is to fill the file with text:

FileIPtr file = new FileI (communicator (), "README", root) ;
Lines text;
text.push_back ("This file system contains "
"a collection of poetry.");
file->write (text) ;
file->activate (adapter) ;

Recall from Section 6.7.3 that Slice sequences map to STL vectors. The Slice type
Lines is a sequence of strings, so the C++ type Lines is a vector of strings; we
add a line of text to our README file by calling push back on that vector.

Finally, we call the Slice wri te operation on our FileT servant by simply
writing:

file->write (text) ;

314

Developing a File System Server in C++

9.2.2

This statement is interesting: the server code invokes an operation on one of its
own servants. Because the call happens via a smart class pointer (of type
FilePtr) and not via a proxy (of type FilePrx), the Ice run time does not
know that this call is even taking place—such a direct call into a servant is not
mediated by the Ice run time in any way and is dispatched as an ordinary C++
function call.

In similar fashion, the remainder of the code creates a subdirectory called
Coleridge and, within that directory, a file called Kubla Khan to complete
the structure in Figure 9.1.

The Servant Class Definitions

We must provide servants for the concrete interfaces in our Slice specification,
that is, we must provide servants for the File and Directory interfaces in the
C++ classes FileI and DirectoryI. This means that our servant classes
might look as follows:

namespace Filesystem {
class FileI : virtual public File {

//
}i
class Directoryl : virtual public Directory ({
//
}i
}
This leads to the C++ class structure as shown in Figure 9.2.
| Object |
| Node |
| File | | Directory |
| FileI | | DirectoryI |

Figure 9.2. File system servants using interface inheritance.

9.2 Implementing a File System Server 315

The shaded classes in Figure 9.2 are skeleton classes and the unshaded classes are
our servant implementations. If we implement our servants like this, FileI must
implement the pure virtual operations it inherits from the Fi1le skeleton (read
and write), as well as the operation it inherits from the Node skeleton (name).
Similarly, DirectoryI must implement the pure virtual function it inherits
from the Directory skeleton (1ist), as well as the operation it inherits from
the Node skeleton (name). Implementing the servants in this way uses interface
inheritance from Node because no implementation code is inherited from that
class.

Alternatively, we can implement our servants using the following definitions:

namespace Filesystem {
class NodeI : virtual public Node ({
//
}i

class FileI : virtual public File,
virtual public NodeI
//
}i

class DirectoryI : virtual public Directory,
virtual public NodeI

//
}i

316 Developing a File System Server in C++

This leads to the C++ class structure shown in Figure 9.3.

| Object |
| Node |
| NodelI |
File | | Directory |
| Filel | | DirectoryI

Figure 9.3. File system servants using implementation inheritance.

In this implementation, NodeT is a concrete base class that implements the name
operation it inherits from the Node skeleton. FileI and DirectoryI use
multiple inheritance from NodeI and their respective skeletons, thatis, FileI
and DirectoryI use implementation inheritance from their NodeI base class.

Either implementation approach is equally valid. Which one to choose simply
depends on whether we want to re-use common code provided by NodeI. For the
implementation that follows, we have chosen the second approach, using imple-
mentation inheritance.

Given the structure in Figure 9.3 and the operations we have defined in the
Slice definition for our file system, we can add these operations to the class defini-
tion for our servants:

namespace Filesystem {
class NodeI : virtual public Node ({
public:
virtual std::string name (const Ice::Currenté&) ;

i

class FileI : virtual public File,
virtual public NodeI {
public:
virtual Lines read(const Ice::Currenté&) ;
virtual void write (const Linesg,
const Ice::Currenté&) ;

9.2 Implementing a File System Server 317

}i

class DirectoryI : virtual public Directory,
virtual public NodeI {
public:
virtual NodeSeq list (const Ice::Currenté&);

}i
}

This simply adds signatures for the operation implementations to each class. Note
that the signatures must exactly match the operation signatures in the generated
skeleton classes—if they do not match exactly, you end up overloading the pure
virtual function in the base class instead of overriding it, meaning that the servant
class cannot be instantiated because it will still be abstract. To avoid signature
mismatches, you can copy the signatures from the generated header file (File-
system.h), or you can use the - -imp1l option with slice2cpp to generate
header and implementation files that you can add your application code to (see
Section 6.16).

Now that we have the basic structure in place, we need to think about other
methods and data members we need to support our servant implementation. Typi-
cally, each servant class hides the copy constructor and assignment operator, and
has a constructor to provide initial state for its data members. Given that all nodes
in our file system have both a name and a parent directory, this suggests that the
Node1 class should implement the functionality relating to tracking the name of
each node, as well as the parent—child relationships:

namespace Filesystem
class DirectoryI;
typedef IceUtil::Handle<DirectoryI> DirectoryIPtr;

class NodeI : virtual public Node ({
public:
virtual std::string name (const Ice::Currenté&) ;
NodelI (const Ice::CommunicatorPtré&,
const std::stringé&,
const DirectoryIPtré&) ;
void activate (const Ice::0ObjectAdapterPtré&) ;
private:
std::string name;
Ice::Identity id;
DirectoryIPtr _parent;

318

Developing a File System Server in C++

NodelI (const Nodelé&) ; // Copy forbidden
void operator=(const NodeI&) ; // Assignment forbidden

}i
}

The NodeT class has a private data member to store its name (of type

std: :string) and its parent directory (of type DirectoryIPtr). The
constructor accepts parameters that set the value of these data members. For the
root directory, by convention, we pass a null handle to the constructor to indicate
that the root directory has no parent. The constructor also requires the communi-
cator to be passed to it. This is necessary because the constructor creates the iden-
tity for the servant, which requires access to the communicator. The activate
member function adds the servant to the ASM (which requires access to the object
adapter) and connects the child to its parent.

The FileT servant class must store the contents of its file, so it requires a
data member for this. We can conveniently use the generated Lines type (which
isastd: :vector<std: :string>) to hold the file contents, one string for
each line. Because FileI inherits from NodeT, it also requires a constructor that
accepts the communicator, file name, and parent directory, leading to the
following class definition:

namespace Filesystem {
class FileI : virtual public File,
virtual public NodeI
public:
virtual Lines read(const Ice::Currenté&) ;
virtual void write (const Linesé&,
const Ice::Currenté&) ;
FileI (const Ice::CommunicatorPtré&,
const std::stringg,
const DirectoryIPtré&) ;
private:
Lines lines;
}i

}

For directories, each directory must store its list of child notes. We can conve-
niently use the generated NodeSeq type (which is a vector<NodePrx>) to do
this. Because DirectoxryI inherits from NodeI, we need to add a constructor
to initialize the directory name and its parent directory. As we will see shortly, we
also need a private helper function, addChild, to make it easier to connect a
newly created directory to its parent. This leads to the following class definition:

9.2 Implementing a File System Server 319

namespace Filesystem {
class DirectoryI : virtual public Directory,
virtual public NodeI {
public:
virtual NodeSeq list (const Ice::Currenté&) const;
DirectoryI (const Ice::CommunicatorPtrég,
const std::stringg,
const DirectoryIPtré&) ;
void addChild (NodePrx child) ;
private:
NodeSeqg contents;
}i
}

Putting all this together, we end up with a servant header file, FilesystemI.h,
as follows:

#include <Ice/Ice.h>
#include <Filesystem.h>

namespace Filesystem {
class DirectoryI;
typedef IceUtil::Handle<DirectoryI> DirectoryIPtr;

class NodelI : virtual public Node ({
public:
virtual std::string name (const Ice::Currenté&) ;
NodeI (const Ice::CommunicatorPtr&,
const std::stringé&,
const DirectoryIPtré&) ;
void activate (const Ice::0bjectAdapterPtré&) ;
private:
std::string name;
Ice::Identity _id;
DirectoryIPtr parent;
NodelI (const Nodelé&) ; // Copy forbidden
void operator=(const Nodel&) ; // Assignment forbidden

}i
typedef IceUtil::Handle<NodeI> NodeIPtr;

class FileI : virtual public File,
virtual public NodeI {
public:
virtual Lines read(const Ice::Currenté&) ;
virtual void write (const Linesg,

320 Developing a File System Server in C++

const Ice::Current& = Ice::Current());
FileI (const Ice::CommunicatorPtré&,
const std::string&,
const DirectoryIPtr&) ;
private:
Lines lines;

}i
typedef IceUtil::Handle<FileI> FileIPtr;

class DirectoryI : virtual public Directory,
virtual public NodeI {
public:
virtual NodeSeq list (const Ice::Currenté&);
DirectoryI (const Ice::CommunicatorPtré,
const std::stringg,
const DirectoryIPtré&) ;
void addChild(const Filesystem: :NodePrx&) ;
private:
Filesystem: :NodeSeq contents;

i

9.2.3 The Servant Implementation

The implementation of our servants is mostly trivial, following from the class
definitions in our FilesystemI .h header file.

Implementing FileI

The implementation of the read and write operations for files is trivial: we
simply store the passed file contents in the 1ines data member. The constructor

is equally trivial, simply passing its arguments through to the NodeT base class
constructor:

Filesystem: :Lines
Filesystem::FileI::read(const Ice::Currenté&)

{
}

return lines;

void
Filesystem::FileI::write(const Filesystem::Lines& text,
const Ice::Currenté&)

9.2 Implementing a File System Server 321

_lines = text;

}

Filesystem::FileI::FileI (const Ice::CommunicatorPtr& communicator,
const string& name,
const DirectoryIPtr& parent
) : Nodel (communicator, name, parent)

Implementing DirectoryI

The implementation of DirectoryT is equally trivial: the 1ist operation
simply returns the contents data member and the constructor passes its argu-
ments through to the NodeI base class constructor:

Filesystem: :NodeSeq
Filesystem: :DirectoryI::list (const Ice::Currenté&)

{
}

Filesystem: :DirectoryI: :DirectoryI (
const Ice::CommunicatorPtr& communicator,
const string& name,
const DirectoryIPtr& parent
) : Nodel (name, parent)

return _contents;

{
}

void
Filesystem: :DirectoryI: :addChild (const NodePrx child)

{
}

The only noteworthy thing is the implementation of addChi1ld: when a new
directory or file is created, the constructor of the NodeI base class calls
addChild on its own parent, passing it the proxy to the newly-created child. The
implementation of addChi1d appends the passed reference to the contents list of
the directory it is invoked on (which is the parent directory).

_contents.push back(child) ;

Implementing NodeI

The name operation of our NodeTI class is again trivial: it simply returns the
_name data member:

322 Developing a File System Server in C++

std::string
Filesystem: :NodeI: :name (const Ice::Currenté&)

{
}

The NodeTI constructor creates an identity for the servant:

return _name;

Filesystem: :Nodel: :Nodel (const Ice::CommunicatorPtr& communicator,
const string& name,
const DirectoryIPtré& parent)
_name (name), parent (parent)

{
}

For the root directory, we use the fixed identity "RootDir". This allows the
client to create a proxy for the root directory (see Section 7.2). For directories
other than the root directory, we use a UUID as the identity (see page 298).
Finally, NodeI provides the act ivate member function that adds the
servant to the ASM and connects the child node to its parent directory:

_id.name = parent ? IceUtil::generateUUID() : "RootDir";

void
Filesystem: :Nodel: :activate (const Ice::0ObjectAdapterPtr& a)

{
NodePrx thisNode = NodePrx::uncheckedCast (a->add(this, _id));
if (_parent)

{
}

_parent->addChild(thisNode) ;

}

This completes our servant implementation. The complete source code is shown
here once more:

#include <IceUtil/IceUtil.h>
#include <FilesystemI.h>

using namespace std;

// Slice Node: :name () operation

std::string

Filesystem: :Nodel: :name (const Ice::Currenté&)

{
}

return _name;

9.2 Implementing a File System Server 323

// Nodel constructor

Filesystem: :Nodel: :Nodel (const Ice::CommunicatorPtr& communicator,
const string& name,
const DirectoryIPtr& parent)
_name (name), parent (parent)

// Create an identity. The root directory has the fixed identi
ty "RootDir"

//

_id.name = parent ? IceUtil::generateUUID() : "RootDir";

// Nodel activate () member function

void
Filesystem: :Nodel: :activate (const Ice::0ObjectAdapterPtr& a)

{

NodePrx thisNode = NodePrx::uncheckedCast (a->add(this, id));
if (_parent)

{
}

_parent->addChild(thisNode) ;

// Slice File::read() operation
Filesystem: :Lines
Filesystem::Filel::read(const Ice::Currenté&)

{
}

return lines;

// Slice File::write() operation
void

Filesystem::FileI::write(const Filesystem::Lines& text, const Ice:
:Current&)

{
}

// Filel constructor

_lines = text;

Filesystem::FileI::FileI (const Ice::CommunicatorPtr& communicator,

324

Developing a File System Server in C++

9.3

const string& name,
const DirectoryIPtr& parent)
NodeI (communicator, name, parent)

{
}

// Slice Directory::1list () operation

Filesystem: :NodeSeq
Filesystem::DirectoryI::list (const Ice::Currenté& c)

{
}

return _contents;

// Directoryl constructor

Filesystem: :DirectoryI: :DirectoryT (
const Ice::CommunicatorPtr& communicator,
const string& name,
const DirectoryIPtr& parent)
NodeI (communicator, name, parent)

{
}

// addChild is called by the child in order to add
// itself to the contents member of the parent

void
Filesystem: :DirectoryI: :addChild (const NodePrx& child)

{
}

_contents.push back(child) ;

Summary

This chapter showed how to implement a complete server for the file system we
defined in Chapter 5. Note that the server is remarkably free of code that relates to
distribution: most of the server code is simply application logic that would be
present just the same for a non-distributed version. Again, this is one of the major
advantages of Ice: distribution concerns are kept away from application code so
that you can concentrate on developing application logic instead of networking
infrastructure.

9.3 Summary 325

Note that the server code we presented here is not quite correct as it stands: if
two clients access the same file in parallel, each via a different thread, one thread
may read the 1lines data member while another thread updates it. Obviously, if
that happens, we may write or return garbage or, worse, crash the server. However,
it is trivial to make the read and write operations thread-safe: a single data
member and two lines of source code are sufficient to achieve this. We discuss
how to write thread-safe servant implementations in Chapter 31.

Part 1V

Java Mapping

Chapter 10
Client-Side Slice-to-Java Mapping

10.1

Chapter Overview

10.2

In this chapter, we present the client-side Slice-to-Java mapping (see Chapter 12
for the server-side mapping). One part of the client-side Java mapping concerns
itself with rules for representing each Slice data type as a corresponding Java type;
we cover these rules in Section 10.3 to Section 10.10. Another part of the mapping
deals with how clients can invoke operations, pass and receive parameters, and
handle exceptions. These topics are covered in Section 10.11 to Section 10.13.
Slice classes have the characteristics of both data types and interfaces and are
covered in Section 10.14. In Section 10.16, we show how you can customize the
Slice-to-Java mapping using metadata. Section 10.17 describes asynchronous
method invocation. Section 10.18 lists the command-line options for the Slice-to-
Java compiler and describes how to use the Slice compiler in ant projects. Finally,
Section 10.19 covers the use of Slice checksums in the Java mapping.

Introduction

The client-side Slice-to-Java mapping defines how Slice data types are translated
to Java types, and how clients invoke operations, pass parameters, and handle
errors. Much of the Java mapping is intuitive. For example, Slice sequences map

329

330

Client-Side Slice-to-Java Mapping

10.3

to Java arrays, so there is essentially nothing new you have to learn in order to use
Slice sequences in Java.

The Java API to the Ice run time is fully thread-safe. Obviously, you must still
synchronize access to data from different threads. For example, if you have two
threads sharing a sequence, you cannot safely have one thread insert into the
sequence while another thread is iterating over the sequence. However, you only
need to concern yourself with concurrent access to your own data—the Ice run
time itself is fully thread safe, and none of the Ice API calls require you to acquire
or release a lock before you safely can make the call.

Much of what appears in this chapter is reference material. We suggest that
you skim the material on the initial reading and refer back to specific sections as
needed. However, we recommend that you read at least Section 10.9 to
Section 10.13 in detail because these sections cover how to call operations from a
client, pass parameters, and handle exceptions.

A word of advice before you start: in order to use the Java mapping, you
should need no more than the Slice definition of your application and knowledge
of the Java mapping rules. In particular, looking through the generated code in
order to discern how to use the Java mapping is likely to be inefficient, due to the
amount of detail. Of course, occasionally, you may want to refer to the generated
code to confirm a detail of the mapping, but we recommend that you otherwise
use the material presented here to see how to write your client-side code.

Mapping for Identifiers

Slice identifiers map to an identical Java identifier. For example, the Slice identi-
fier Clock becomes the Java identifier C1ock. There is one exception to this rule:
if a Slice identifier is the same as a Java keyword or is an identifier reserved by the
Ice run time (such as checkedCast), the corresponding Java identifier is prefixed
with an underscore. For example, the Slice identifier while is mapped as
_while.!

A single Slice identifier often results in several Java identifiers. For example,
for a Slice interface named Foo, the generated Java code uses the identifiers Foo
and FooPrx (among others). If the interface has the name wh1ile, the generated

1. As suggested in Section 4.5.3 on page 92, you should try to avoid such identifiers as much as
possible.

10.4 Mapping for Modules 331

10.4

identifiers are _while and whilePrx (not _whilePrx), that is, the under-
score prefix is applied only to those generated identifiers that actually require it.

Mapping for Modules

Slice modules map to Java packages with the same name as the Slice module. The
mapping preserves the nesting of the Slice definitions. For example:

// Definitions at global scope here...

module M1 {
// Definitions for M1 here...
module M2 {
// Definitions for M2 here...
1
};
/] ..
module M1 { // Reopen M1
// More definitions for M1 here...
1

This definition maps to the corresponding Java definitions:

package M1;
// Definitions for M1 here...

package M1.M2;
// Definitions for M2 here...

package M1;
// Definitions for M1 here...

Note that these definitions appear in the appropriate source files; source files for
definitions in module M1 are generated in directory M1 underneath the top-level
directory, and source files for definitions for module M2 are generated in
directory M1 /M2 underneath the top-level directory. You can set the top-level
output directory using the - -output-dir option with slice2java (see
Section 4.20).

332 Client-Side Slice-to-Java Mapping

10.5 The Ice Package

All of the APIs for the Ice run time are nested in the Ice package, to avoid
clashes with definitions for other libraries or applications. Some of the contents of
the ITce package are generated from Slice definitions; other parts of the Ice
package provide special-purpose definitions that do not have a corresponding
Slice definition. We will incrementally cover the contents of the Tce package
throughout the remainder of the book.

10.6 Mapping for Simple Built-in Types

The Slice built-in types are mapped to Java types as shown in Table 10.1.

Table 10.1. Mapping of Slice built-in types to Java.

Slice Java

bool boolean

byte byte

short short

int int

Tong long

float float

double || double

string || String

10.7 Mapping for User-Defined Types

Slice supports user-defined types: enumerations, structures, sequences, and
dictionaries.

10.7 Mapping for User-Defined Types

333

10.7.1

Mapping for Enumerations

A Slice enum type maps to the Java enum type. Consider the following example:

enum Fruit { Apple, Pear, Orange };

The Java mapping for Fruit is shown below:
public enum Fruit implements java.io.Serializable {
Apple,

Pear,
Orange;

!/
}

Given the above definitions, we can use enumerated values as follows:

Fruit favoriteFruit = Fruit.Apple;

Fruit otherFavoriteFruit = Fruit.Orange;
if (favoriteFruit == Fruit.Apple) // Compare with constant
//
if (f1 == £2) // Compare two enums
//
switch (£2) { // Switch on enum
case Fruit.Apple:
//
break;
case Fruit.Pear
//
break;
case Fruit.Orange
//
break;

}

Note that the generated class contains a number of other members, which we have

not shown. These members are internal to the Ice run time and you must not use
them in your application code (because they may change from release to release).

334

Client-Side Slice-to-Java Mapping

10.7.2 Mapping for Structures

Slice structures map to Java classes with the same name. For each Slice data
member, the Java class contains a corresponding public data member. For
example, here is our Employee structure from Section 4.9.4 once more:

struct Employee {

Tong number;
string firstName;
string lastName;

The Slice-to-Java compiler generates the following definition for this structure:

public final class Employee implements java.lang.Cloneable,

java.io.Serializable {
public long number;
public String firstName;
public String lastName;

public Employee {}
public Employee (long number,

String firstName,
String lastName) {

this.number = number;
this.firstName = firstName;
this.lastName = lastName;
!
public boolean equals(java.lang.Object rhs) {
//
1
public int hashCode() {
//
1

public java.lang.Object clone ()
java.lang.Object o;
try

{
}

catch(java.lang.CloneNotSupportedException ex)

{

o = super.clone() ;

assert false; // impossible

10.7 Mapping for User-Defined Types 335

10.7.3

}

return o;

}

For each data member in the Slice definition, the Java class contains a corre-
sponding public data member of the same name. Refer to Section 10.16.3 for
additional information on data members.

The equals member function compares two structures for equality. Note that
the generated class also provides the usual hashCode and clone methods.
(clone has the default behavior of making a shallow copy.)

Constructors

Structures have a default constructor that default-constructs each data member.
This means members of primitive type are initialized to the equivalent of zero, and
members of reference type are initialized to null. Note that applications must
always explicitly initialize members of structure and enumerated types because
the Ice run time does not accept null as a legal value for these types.

If you wish to ensure that data members of primitive and enumerated types are
initialized to specific values, you can declare default values in your Slice defini-
tion (see Section 4.9.2). The default constructor initializes each of these data
members to its declared value.

Structures also have a second constructor that has one parameter for each data
member. This allows you to construct and initialize a class instance in a single
statement (instead of first having to construct the instance and then assigning to its
members).

Mapping for Sequences

Slice sequences map to Java arrays. This means that the Slice-to-Java compiler
does not generate a separate named type for a Slice sequence. For example:

sequence<Fruit> FruitPlatter;

This definition simply corresponds to the Java type Fruit []. Naturally, because
Slice sequences are mapped to Java arrays, you can take advantage of all the array
functionality provided by Java, such as initialization, assignment, cloning, and the
length member. For example:

Fruit[] platter = { Fruit.Apple, Fruit.Pear };
assert (platter.length == 2);

336 Client-Side Slice-to-Java Mapping
See Section 10.16 for information on alternate mappings for sequence types.
10.7.4 Mapping for Dictionaries

Here is the definition of our EmployeeMap from Section 4.9.4 once more:
dictionary<long, Employee> EmployeeMap;
As for sequences, the Java mapping does not create a separate named type for this
definition. Instead, the dictionary is simply an instance of the generic type
java.util.Map<K, V>, where Kisthe mapping of the key type and Vis the
mapping of the value type. In the example above, EmpT1oyeeMap is mapped to the
Javatype java.util .Map<Long, Employeex. The following code demon-
strates how to allocate and use an instance of EmployeeMap:
java.util .Map<Long, Employee> em =

new java.util.HashMap<Long, Employees> () ;
Employee e = new Employee () ;
e.number = 31;
e.firstName = "James";
e.lastName = "Gosling";
em.put (e.number, e);
The typesafe nature of the mapping makes iterating over the dictionary quite
convenient:
for (java.util.Map.Entry<Long, Employee> i : em.entrySet()) {

long num = i.getKey () ;

Employee emp = i.getValue() ;

System.out.println(emp.firstName + " was employee #" + num) ;
}
See Section 10.16 for information on alternate mappings for dictionary types.

10.8 Mapping for Constants

Here are the constant definitions we saw in Section 4.9.5 on page 103 once more:

const bool AppendByDefault = true;
const byte LowerNibble = 0x0f;
const string Advice = "Don't Panic!";

const short TheAnswer = 42;

10.9 Mapping for Exceptions

337

10.9

const double PI = 3.1416;

enum Fruit { Apple, Pear, Orange };
const Fruit FavoriteFruit = Pear;

Here are the generated definitions for these constants:

public interface AppendByDefault
boolean value = true;

}

public interface LowerNibble {
byte value = 15;

public interface Advice {
String value = "Don't Panic!";

}

public interface TheAnswer (
short value = 42;

}

public interface PI
double value = 3.1416;

}

public interface FavoriteFruit {
Fruit value = Fruit.Pear;

}

As you can see, each Slice constant is mapped to a Java interface with the same
name as the constant. The interface contains a member named value that holds

the value of the constant.

Mapping for Exceptions

Here is a fragment of the Slice definition for our world time server from

Section 4.10.5 on page 120 once more:

338 Client-Side Slice-to-Java Mapping

exception GenericError {
string reason;
};
exception BadTimeVal extends GenericError {};
exception BadZoneName extends GenericError {};

These exception definitions map as follows:

public class GenericError extends Ice.UserException ({
public String reason;

public GenericError () {}

public GenericError (String reason)

this.reason = reason;
public String ice name() {
return "GenericError";

public class BadTimeVal extends GenericError
public BadTimeval() {}

public BadTimeVal (String reason)

{
super (reason) ;

1

public String ice name() {
return "BadTimeVal";

!

}

public class BadZoneName extends GenericError
public BadZoneName () {}

public BadZoneName (String reason)

{
}

super (reason) ;

10.9 Mapping for Exceptions 339

public String ice name() {
return "BadZoneName";

}

Each Slice exception is mapped to a Java class with the same name. For each data
member, the corresponding class contains a public data member. (Obviously,
because BadTimeVal and BadZoneName do not have members, the generated
classes for these exceptions also do not have members.) Refer to Section 10.16.3
for additional information on data members.

The inheritance structure of the Slice exceptions is preserved for the generated
classes, so BadTimeVal and BadZoneName inherit from GenericError.

Each exception also defines the ice name member function, which returns
the name of the exception.

All user exceptions are derived from the base class Ice.UserException.
This allows you to catch all user exceptions generically by installing a handler for
Ice.UserException. Ice.UserException, in turn, derives from
java.lang.Exception.

Ice.UserException implements a clone method that is inherited by its
derived exceptions, so you can make memberwise shallow copies of exceptions.

Note that the generated exception classes contain other member functions that
are not shown. However, those member functions are internal to the Java mapping
and are not meant to be called by application code.

Constructors

Exceptions have a default constructor that default-constructs each data member.
This means members of primitive type are initialized to the equivalent of zero, and
members of reference type are initialized to null. Note that applications must
always explicitly initialize members of structure and enumerated types because
the Ice run time does not accept null as a legal value for these types.

If you wish to ensure that data members of primitive and enumerated types are
initialized to specific values, you can declare default values in your Slice defini-
tion (see Section 4.10.2). The default constructor initializes each of these data
members to its declared value.

Exceptions also have a second constructor that has one parameter for each
data member. This allows you to construct and initialize a class instance in a
single statement (instead of first having to construct the instance and then
assigning to its members). For derived exceptions, this constructor accepts one

340 Client-Side Slice-to-Java Mapping
argument for each base exception member, plus one argument for each derived
exception member, in base-to-derived order.

10.10 Mapping for Run-Time Exceptions

The Ice run time throws run-time exceptions for a number of pre-defined error
conditions. All run-time exceptions directly or indirectly derive from
Ice.LocalException (which, in turn, derives from java.lang.Runti-
meException).

Ice.LocalExceptions implements a clone method that is inherited by
its derived exceptions, so you can make memberwise shallow copies of excep-
tions.

An inheritance diagram for user and run-time exceptions appears in Figure 4.4
on page 117. By catching exceptions at the appropriate point in the hierarchy, you
can handle exceptions according to the category of error they indicate:

® Tce.LocalException

This is the root of the inheritance tree for run-time exceptions.
® Tce.UserException

This is the root of the inheritance tree for user exceptions.
® Tce.TimeoutException

This is the base exception for both operation-invocation and connection-estab-
lishment timeouts.

® Tce.ConnectTimeoutException

This exception is raised when the initial attempt to establish a connection to a
server times out.

You will probably have little need to catch the remaining run-time exceptions; the
fine-grained error handling offered by the remainder of the hierarchy is of interest
mainly in the implementation of the Ice run time. However, there is one exception
you will probably be interested in specifically: Ice.ObjectNotExistEx-
ception. This exception is raised if a client invokes an operation on an Ice
object that no longer exists. In other words, the client holds a dangling reference
to an object that probably existed some time in the past but has since been perma-
nently destroyed.

10.11 Mapping for Interfaces 341

10.11 Mapping for Interfaces

Slice interfaces map to proxies on the client side. A proxy is simply a Java inter-
face with operations that correspond to the operations defined in the Slice inter-
face.

The compiler generates quite few source files for each Slice interface. In
general, for an interface <interface-name>, the following source files are created
by the compiler:

®* <interface-name>.java

This source file declares the <interface-name> Java interface.
®* <interface-name>Holder.java

This source file defines a holder type for the interface (see page 353).
®* <interface-name>Prx.java

This source file defines the <interface-name>Prx interface (see
page 342).

®* <interface-name>PrxHelper.java

This source file defines the helper type for the interface’s proxy (see
page 345).

®* <interface-name>PrxHolder.java

This source file defines the holder type for the interface’s proxy (see
page 353).

* <interface-name>Operations.java
_<interface-name>OperationsNC.java

These source files each define an interface that contains the operations corre-
sponding to the Slice interface.

These are the files that contain code that is relevant to the client side. The
compiler also generates a file that is specific to the server side, plus three addi-
tional files:

®* <interface-name>Disp.java
This file contains the definition of the server-side skeleton class.
®* <interface-name>Del.java

* <interface-name>DelD.java

342 Client-Side Slice-to-Java Mapping
®* <interface-name>DelM.java
These files contain code that is internal to the Java mapping; they do not
contain any functions of relevance to application programmers.
10.11.1 Proxy Interfaces

On the client side, Slice interfaces map to Java interfaces with member functions
that correspond to the operations on those interfaces. Consider the following
simple interface:

interface Simple {
void op();
};

The Slice compiler generates the following definition for use by the client:

public interface SimplePrx extends Ice.ObjectPrx
public void op();
public void op(java.util.Map<String, String> _ context) ;

}

As you can see, the compiler generates a proxy interface SimplePrx. In general,
the generated name is <interface-name>Prx. If an interface is nested in a
module M, the generated class is part of package M, so the fully-qualified name is
M. <interface-name>Prx.

In the client’s address space, an instance of SimplePrx is the local ambas-
sador for a remote instance of the Simp1e interface in a server and is known as a
proxy instance. All the details about the server-side object, such as its address,
what protocol to use, and its object identity are encapsulated in that instance.

Note that SimplePrx inherits from Ice.ObjectPrx. This reflects the
fact that all Ice interfaces implicitly inherit from Ice: :0Object.

For each operation in the interface, the proxy class has a member function of
the same name. For the preceding example, we find that the operation op has been
mapped to the member function op. Also note that op is overloaded: the second
version of op has a parameter context of type
java.util.Map<String, Strings.This parameter is for use by the Ice
run time to store information about how to deliver a request. You normally do not
need to use it. (We examine the context parameter in detail in Chapter 32.
The parameter is also used by IceStorm—see Chapter 44.)

Because all the <interface-name>Prx types are interfaces, you cannot
instantiate an object of such a type. Instead, proxy instances are always instanti-

10.11 Mapping for Interfaces 343

10.11.2

ated on behalf of the client by the Ice run time, so client code never has any need
to instantiate a proxy directly.The proxy references handed out by the Ice run time
are always of type <interface-name>Prx; the concrete implementation of
the interface is part of the Ice run time and does not concern application code.

A value of null denotes the null proxy. The null proxy is a dedicated value
that indicates that a proxy points “nowhere” (denotes no object).

The Ice.ObjectPrx Interface

All Ice objects have Object as the ultimate ancestor type, so all proxies inherit
from Ice.ObjectPrx. ObjectPrx provides a number of methods:

package Ice;

public interface ObjectPrx {
boolean equals(java.lang.Object r);
Identity ice getIdentity();
boolean ice isA(String _ id);
boolean ice_ isA(String _ id,
java.util.Map<String, String> ctx);
String[] ice ids();
String[] ice ids(java.util.Map<String, String> ctx);
String ice id();
String ice id(java.util.Map<String, String> ctx);
void ice_ping() ;
void ice_ping(java.util.Map<String, String> ctx);
//
}

The methods behave as follows:
® equals

This operation compares two proxies for equality. Note that all aspects of
proxies are compared by this operation, such as the communication endpoints
for the proxy. This means that, in general, if two proxies compare unequal,
that does not imply that they denote different objects. For example, if two
proxies denote the same Ice object via different transport endpoints, equals
returns f£alse even though the proxies denote the same object.

® ice getIdentity

This method returns the identity of the object denoted by the proxy. The iden-
tity of an Ice object has the following Slice type:

344

Client-Side Slice-to-Java Mapping

module Ice {
struct Identity {
string name;
string category;
};
};

To see whether two proxies denote the same object, first obtain the identity for
each object and then compare the identities:

Ice.ObjectPrx ol = ...;
Ice.ObjectPrx 02 = ...;
Ice.Identity 11 = ol.ice getIdentity();
Ice.Identity 12 = o2.ice getIdentity();

if (il.equals(i2))

// ol and o2 denote the same object
else

// ol and o2 denote different objects

ice_isA
This method determines whether the object denoted by the proxy supports a
specific interface. The argument to ice isAis a type ID (see Section 4.13).

For example, to see whether a proxy of type ObjectPrx denotes a Printer
object, we can write:

Ice.ObjectPrx o = ...;

if (o != null && o.ice isA("::Printexr"))
// o denotes a Printer object

else
// o denotes some other type of object

Note that we are testing whether the proxy is null before attempting to invoke
the ice 1isA method. This avoids getting a NullPointerException if
the proxy is null.

ice ids

This method returns an array of strings representing all of the type IDs that the
object denoted by the proxy supports.

ice id

This method returns the type ID of the object denoted by the proxy. Note that

the type returned is the type of the actual object, which may be more derived
than the static type of the proxy. For example, if we have a proxy of type

10.11 Mapping for Interfaces 345

10.11.3

BasePrx, with a static type ID of : :Base, the return value of ice id might
be : :Base, or it might something more derived, such as : :Derived.
®* ice ping

This method provides a basic reachability test for the object. If the object can
physically be contacted (that is, the object exists and its server is running and
reachable), the call completes normally; otherwise, it throws an exception that
indicates why the object could not be reached, such as ObjectNotExist -
Exception or ConnectTimeoutException.

The ice isA,ice_ids,ice id, and ice_ ping methods are remote opera-

tions and therefore support an additional overloading that accepts a request

context. Also note that there are other methods in ObjectPrx (not shown here)

that provide different ways to dispatch a call. We discuss these topics in

Chapter 32.

Proxy Helpers

For each Slice interface, apart from the proxy interface, the Slice-to-Java compiler
creates a helper class: for an interface Simple, the name of the generated helper
class is SimplePrxHelper. The helper classes contains two methods that
support down-casting:
public final class SimplePrxHelper

extends Ice.ObjectPrxHelper implements SimplePrx {

public static SimplePrx checkedCast (Ice.ObjectPrx b) {
//
}

public static SimplePrx checkedCast (Ice.ObjectPrx b,
Ice.Context ctx) {

//

}

public static SimplePrx uncheckedCast (Ice.ObjectPrx b) {
//

}

//

}

Both the checkedCast and uncheckedCast methods implement a down-
cast: if the passed proxy is a proxy for an object of type Simple, or a proxy for an
object with a type derived from SimpTe, the cast returns a non-null reference to a

346

Client-Side Slice-to-Java Mapping

proxy of type SimplePrx; otherwise, if the passed proxy denotes an object of a
different type (or if the passed proxy is null), the cast returns a null reference.

Given a proxy of any type, you can use a checkedCast to determine
whether the corresponding object supports a given type, for example:

Ice.ObjectPrx obj = ...; // Get a proxy from somewhere...

SimplePrx simple = SimplePrxHelper.checkedCast (obj) ;
if (simple != null)

// Object supports the Simple interface...
else

// Object is not of type Simple...

Note that a checkedCast contacts the server. This is necessary because only
the implementation of a proxy in the server has definite knowledge of the type of
an object. As a result, a checkedCast may throw a ConnectTimeoutEx-
ception or an ObjectNotExistException. (This also explains the need
for the helper class: the Ice run time must contact the server, so we cannot use a
Java down-cast.)

In contrast, an uncheckedCast does not contact the server and uncondi-
tionally returns a proxy of the requested type. However, if you do use an
uncheckedCast, you must be certain that the proxy really does support the
type you are casting to; otherwise, if you get it wrong, you will most likely get a
run-time exception when you invoke an operation on the proxy. The most likely
error for such a type mismatch is OperationNotExistException.
However, other exceptions, such as a marshaling exception are possible as well.
And, if the object happens to have an operation with the correct name, but
different parameter types, no exception may be reported at all and you simply end
up sending the invocation to an object of the wrong type; that object may do rather
non-sensical things. To illustrate this, consider the following two interfaces:

interface Process {
void Tlaunch(int stackSize, int dataSize);

};
/] ...

interface Rocket {
void Taunch(float xCoord, float yCoord);
};

Suppose you expect to receive a proxy for a Process object and use an
uncheckedCast to down-cast the proxy:

10.11 Mapping for Interfaces 347

10.11.4

Ice.ObjectPrx obj = ...; // Get proxy...
ProcessPrx process

= ProcessPrxHelper.uncheckedCast (obj); // No worries...
process.launch (40, 60); // Oops...

If the proxy you received actually denotes a Rocket object, the error will go unde-
tected by the Ice run time: because int and float have the same size and because
the Ice protocol does not tag data with its type on the wire, the implementation of
Rocket: : Taunch will simply misinterpret the passed integers as floating-point
numbers.

In fairness, this example is somewhat contrived. For such a mistake to go
unnoticed at run time, both objects must have an operation with the same name
and, in addition, the run-time arguments passed to the operation must have a total
marshaled size that matches the number of bytes that are expected by the unmar-
shaling code on the server side. In practice, this is extremely rare and an incorrect
uncheckedCast typically results in a run-time exception.

A final warning about down-casts: you must use either a checkedCast or
an uncheckedCast to down-cast a proxy. If you use a Java cast, the behavior is
undefined.

Using Proxy Methods

The base proxy class ObjectPrx supports a variety of methods for customizing
a proxy (see Section 32.11). Since proxies are immutable, each of these “factory

methods” returns a copy of the original proxy that contains the desired modifica-
tion. For example, you can obtain a proxy configured with a ten second timeout as
shown below:

Ice.ObjectPrx proxy = communicator.stringToProxy(...);
proxy = proxy.ice timeout (10000) ;

A factory method returns a new proxy object if the requested modification differs
from the current proxy, otherwise it returns the current proxy. With few excep-
tions, factory methods return a proxy of the same type as the current proxy, there-
fore it is generally not necessary to repeat a checkedCast or
uncheckedCast after using a factory method. However, a regular cast is still
required, as shown in the example below:

Ice.ObjectPrx base = communicator.stringToProxy(...);

HelloPrx hello = HelloPrxHelper.checkedCast (base) ;

hello = (HelloPrx)hello.ice timeout (10000); # Type is preserved
hello.sayHello() ;

348 Client-Side Slice-to-Java Mapping
The only exceptions are the factory methods ice facet and ice_identity.
Calls to either of these methods may produce a proxy for an object of an unrelated
type, therefore they return a base proxy that you must subsequently down-cast to
an appropriate type.

10.11.5 Object Identity and Proxy Comparison

Proxies provide an equals method that compares proxies:

interface ObjectPrx
boolean equals(java.lang.Object r);
}

Note that proxy comparison with equals uses all of the information in a proxy

for the comparison. This means that not only the object identity must match for a
comparison to succeed, but other details inside the proxy, such as the protocol and
endpoint information, must be the same. In other words, comparison with

equals tests for proxy identity, not object identity. A common mistake is to write
code along the following lines:

Ice.ObjectPrx pl e // Get a proxy...
Ice.ObjectPrx p2 = ...; // Get another proxy...

if (pl.equals(p2)) {

// pl and p2 denote different objects // WRONG!
} else {
// pl and p2 denote the same object // Correct

}

Even though p1 and p2 differ, they may denote the same Ice object. This can
happen because, for example, both p1 and p2 embed the same object identity, but
each use a different protocol to contact the target object. Similarly, the protocols
may be the same, but denote different endpoints (because a single Ice object can
be contacted via several different transport endpoints). In other words, if two
proxies compare equal with equals, we know that the two proxies denote the
same object (because they are identical in all respects); however, if two proxies
compare unequal with equals, we know absolutely nothing: the proxies may or
may not denote the same object.

To compare the object identities of two proxies, you can use a helper function
inthe Ice.Ut1il class:

10.11 Mapping for Interfaces 349

package Ice;

public final class Util {
public static int proxyIdentityCompare (ObjectPrx lhs,
ObjectPrx rhs) ;
public static int proxyIdentityAndFacetCompare (ObjectPrx lhs,
ObjectPrx rhs) ;

//
}
proxyIdentityCompare allows you to correctly compare proxies for iden-
tity:
Ice.ObjectPrx pl = ...; // Get a proxy...
Ice.ObjectPrx p2 = ...; // Get another proxy...
if (Ice.Util.proxyIdentityCompare(pl, p2) != 0) {

// pl and p2 denote different objects // Correct
} else {

// pl and p2 denote the same object // Correct
}

The function returns O if the identities are equal, —1 if p1 is less than p2, and 1 if
p1l is greater than p2. (The comparison uses name as the major and category
as the minor sort key.)

The proxyIdentityAndFacetCompare function behaves similarly, but
compares both the identity and the facet name (see Chapter 33).

In addition, the Java mapping provides two wrapper classes that allow you to
wrap a proxy for use as the key of a hashed collection:

package Ice;

public class ProxyIdentityKey
public ProxyIdentityKey (Ice.ObjectPrx proxy) ;
public int hashCode() ;
public boolean equals(java.lang.Object obj) ;
public Ice.ObjectPrx getProxy() ;

}

public class ProxyIdentityFacetKey {
public ProxyIdentityFacetKey (Ice.ObjectPrx proxy) ;
public int hashCode() ;
public boolean equals(java.lang.Object obj);
public Ice.ObjectPrx getProxy() ;

350

Client-Side Slice-to-Java Mapping

10.11.6

The constructor caches the identity and the hash code of the passed proxy, so calls
to hashCode and equals can be evaluated efficiently. The get Proxy method
returns the proxy that was passed to the constructor.

As for the comparison functions, ProxyIdentityKey only uses the
proxy’s identity, whereas ProxyIdentityFacetKey also includes the facet
name.

Deserializing Proxies

Proxy objects implement the java.io.Serializable interface that enables
serialization of proxies to and from a byte stream. You can use the standard class
java.io.0ObjectInputStream to deserialize all Slice types except proxies;
proxies are a special case because they must be created by a communicator.

To supply a communicator for use in deserializing proxies, an application
must use the class Ice.ObjectInputStream:

package Ice;

public class ObjectInputStream extends java.io.ObjectInputStream
public ObjectInputStream(Communicator communicator,
java.io.InputStream stream)
throws java.io.IOException;

public Communicator getCommunicator () ;

}
The code shown below demonstrates how to use this class:

Ice.Communicator communicator =
byte[] bytes = ... // data to be deserialized
java.io.ByteArrayInputStream byteStream =

new java.io.ByteArrayInputStream(bytes) ;
Ice.ObjectInputStream in =

new Ice.ObjectInputStream(communicator, byteStream) ;
Ice.ObjectPrx proxy = (Ice.ObjectPrx)in.readObject () ;

Ice raises java.io.IOException if an application attempts to deserialize a
proxy without supplying a communicator.

10.12 Mapping for Operations 351

10.12 Mapping for Operations

10.12.1

As we saw in Section 10.11, for each operation on an interface, the proxy class
contains a corresponding member function with the same name. To invoke an
operation, you call it via the proxy. For example, here is part of the definitions for
our file system from Section 5.4:

module Filesystem {
interface Node {
idempotent string name();
1
// ...
};

The name operation returns a value of type string. Given a proxy to an object of
type Node, the client can invoke the operation as follows:

NodePrx node = ...; // Initialize proxy
String name = node.name () ; // Get name via RPC

This illustrates the typical pattern for receiving return values: return values are
returned by reference for complex types, and by value for simple types (such as
int or double).

Normal and idempotent Operations

You can add an idempotent qualifier to a Slice operation. As far as the signature
for the corresponding proxy method is concerned, idempotent has no effect. For
example, consider the following interface:

interface Example {
string opl();
idempotent string op2();
b

The proxy interface for this is:

public interface ExamplePrx extends Ice.ObjectPrx {
public String opl();
public String op2();

}

Because idempotent affects an aspect of call dispatch, not interface, it makes
sense for the two methods to be mapped the same.

352

Client-Side Slice-to-Java Mapping

10.12.2 Passing Parameters

In-Parameters

The parameter passing rules for the Java mapping are very simple: parameters are
passed either by value (for simple types) or by reference (for complex types and
type String). Semantically, the two ways of passing parameters are identical: it
is guaranteed that the value of a parameter will not be changed by the invocation
(with some caveats—see page 1093).

Here is an interface with operations that pass parameters of various types from
client to server:

struct NumberAndString {
int x;
string str;

};
sequence<string> StringSeq;
dictionary<long, StringSeqg> StringTable;

interface ClientToServer {
void opl(int i, float f, bool b, string s);
void op2(NumberAndString ns, StringSeq ss, StringTable st);
void op3(ClientToServers proxy);

3
The Slice compiler generates the following proxy for this definition:

public interface ClientToServerPrx extends Ice.ObjectPrx {
public void opl(int i, float f, boolean b, String s);
public void op2 (NumberAndString ns,
Stringl[] ss,
java.util .Map st);
public void op3 (ClientToServerPrx proxy) ;

}

Given a proxy to a C1ientToServer interface, the client code can pass parameters
as in the following example:

ClientToServerPrx p = ...; // Get proxy...
p.opl (42, 3.14f, true, "Hello world!"); // Pass simple literals
int i 42

float £ = 3.14f;

10.12 Mapping for Operations 353

boolean b = true;
String s = "Hello world!";
p.opl(i, £, b, s); // Pass simple variables

NumberAndString ns = new NumberAndString() ;

ns.x = 42;

ns.str = "The Answer";

String[] ss = { "Hello world!" };

java.util.HashMap st = new java.util.HashMap() ;

st.put (new Long(0), ns);

p.op2(ns, ss, st); // Pass complex variables

p.op3(p); // Pass proxy

Out-Parameters

Java does not have pass-by-reference: parameters are always passed by value. For
a function to modify one of its arguments, we must pass a reference (by value) to
an object; the called function can then modify the object’s contents via the passed
reference.

To permit the called function to modify a parameter, the Java mapping uses so-
called holder classes. For example, for each of the built-in Slice types, such as int
and string, the Ice package contains a corresponding holder class. Here are the
definitions for the holder classes Ice.IntHolder and Ice.StringHolder:

package Ice;

public final class IntHolder {
public IntHolder() {}
public IntHolder (int value)
this.value = value;

}

public int value;

}

public final class StringHolder ({
public StringHolder () {}
public StringHolder (String value) {
this.value = value;

}

public String value;

354

Client-Side Slice-to-Java Mapping

A holder class has a public value member that stores the value of the parameter;
the called function can modify the value by assigning to that member. The class
also has a default constructor and a constructor that accepts an initial value.

For user-defined types, such as structures, the Slice-to-Java compiler generates
a corresponding holder type. For example, here is the generated holder type for
the NumberAndString structure we defined on page 352:

public final class NumberAndStringHolder
public NumberAndStringHolder () {}

public NumberAndStringHolder (NumberAndString value)
this.value = value;
!

public NumberAndString value;

}

This looks exactly like the holder classes for the built-in types: we get a default
constructor, a constructor that accepts an initial value, and the public value
member.

Note that holder classes are generated for every Slice type you define. For
example, for sequences, such as the FruitPlatter sequence we saw on page 335,
the compiler does not generate a special Java FruitPlatter type because
sequences map to Java arrays. However, the compiler does generate a Fruit -
PlatterHolder class, so we can pass a FruitPlatter array as an out-
parameter.

To pass an out-parameter to an operation, we simply pass an instance of a
holder class and examine the value member of each out-parameter when the call
completes. Here is the same Slice definition we saw on page 352 once more, but
this time with all parameters being passed in the out direction:

struct NumberAndString {
int x;
string str;

s

sequence<string> StringSeq;
dictionary<long, StringSeq> StringTable;
interface ServerToClient {

void opl(out int i, out float f, out bool b, out string s);
void op2(out NumberAndString ns,

10.12 Mapping for Operations 355

out StringSeq ss,
out StringTable st);
void op3(out ServerToClients proxy);

3
The Slice compiler generates the following code for this definition:

public interface ClientToServerPrx extends Ice.ObjectPrx {
public void opl(Ice.IntHolder i, Ice.FloatHolder f,
Ice.BooleanHolder b, Ice.StringHolder s);
public void op2 (NumberAndStringHolder ns,
StringSeqHolder ss, StringTableHolder st);
public void op3(ClientToServerPrxHolder proxy) ;

}

Given a proxy to a ServerToClient interface, the client code can pass parameters
as in the following example:

ClientToServerPrx p = ...; // Get proxy...

Ice.IntHolder ih = new Ice.IntHolder() ;
Ice.FloatHolder fh = new Ice.FloatHolder() ;
Ice.BooleanHolder bh = new Ice.BooleanHolder () ;
Ice.StringHolder sh = new Ice.StringHolder () ;
p.opl(ih, fh, bh, sh);

NumberAndStringHolder nsh = new NumberAndString() ;
StringSeqHolder ssh = new StringSegHolder() ;
StringTableHolder sth = new StringTableHolder() ;
p.op2(nsh, ssh, sth);

ServerToClientPrxHolder stcph = new ServerToClientPrxHolder () ;
p.op3(stch) ;

System.out.writeln(ih.value) ; // Show one of the values

Again, there are no surprises in this code: the various holder instances contain
values once the operation invocation completes and the value member of each
instance provides access to those values.

Null Parameters

Some Slice types naturally have “empty” or “not there” semantics. Specifically,
sequences, dictionaries, and strings all can be nul1l, but the corresponding Slice
types do not have the concept of a null value. To make life with these types easier,
whenever you pass null as a parameter or return value of type sequence,

356

Client-Side Slice-to-Java Mapping

10.13

dictionary, or string, the Ice run time automatically sends an empty sequence,
dictionary, or string to the receiver.

This behavior is useful as a convenience feature: especially for deeply-nested
data types, members that are sequences, dictionaries, or strings automatically
arrive as an empty value at the receiving end. This saves you having to explicitly
initialize, for example, every string element in a large sequence before sending the
sequence in order to avoid NullPointerExceptions. Note that using null
parameters in this way does not create null semantics for Slice sequences, diction-
aries, or strings. As far as the object model is concerned, these do not exist (only
empty sequences, dictionaries, and strings do). For example, whether you send a
string as null or as an empty string makes no difference to the receiver: either
way, the receiver sees an empty string.

Exception Handling

Any operation invocation may throw a run-time exception (see Section 10.10 on
page 340) and, if the operation has an exception specification, may also throw
user exceptions (see Section 10.9 on page 337). Suppose we have the following
simple interface:

exception Tantrum {
string reason;

};

interface Child {
void askToCleanUp() throws Tantrum;

};

Slice exceptions are thrown as Java exceptions, so you can simply enclose one or
more operation invocations in a try—catch block:

ChildPrx child = ...; // Get child proxy...

try {
child.askToCleanUp() ;

} catch (Tantrum t) {
System.out.write ("The child says: ");
System.out.writeln(t.reason) ;

10.13 Exception Handling 357

Typically, you will catch only a few exceptions of specific interest around an oper-
ation invocation; other exceptions, such as unexpected run-time errors, will typi-
cally be handled by exception handlers higher in the hierarchy. For example:

public class Client {

static void run() {
ChildPrx child = ...; // Get child proxy...
try {

child.askToCleanUp () ;
} catch (Tantrum t) {
System.out.print ("The child says: ");
System.out.println (t.reason) ;
child.scold() ; // Recover from error...

}

child.praise () ; // Give positive feedback...

}

public static void

main (String[] args)
{
try {
//
run () ;
//

} catch (Ice.LocalException e)
e.printStackTrace () ;

} catch (Ice.UserException e) ({
System.err.println(e.getMessage()) ;

}
}

This code handles a specific exception of local interest at the point of call and
deals with other exceptions generically. (This is also the strategy we used for our
first simple application in Chapter 3.)

Exceptions and Out-Parameters

The Ice run time makes no guarantees about the state of out-parameters when an
operation throws an exception: the parameter may still have its original value or
may have been changed by the operation’s implementation in the target object. In
other words, for out-parameters, Ice provides the weak exception guarantee [21]
but does not provide the strong exception guarantee.

358

Client-Side Slice-to-Java Mapping

10.14 Mapping for Classes

Slice classes are mapped to Java classes with the same name. The generated class
contains a public data member for each Slice data member (just as for structures
and exceptions), and a member function for each operation. Consider the
following class definition:

class TimeOfDay {

short hour; // 0 - 23
short minute; // 0 - 59
short second; // @ - 59
string format(); // Return time as hh:mm:ss

s
The Slice compiler generates the following code for this definition:

public interface _TimeOfDayOperations

}

String format (Ice.Current current) ;

public interface _TimeOfDayOperationsNC {
String format () ;
}

public abstract class TimeOfDay extends Ice.ObjectImpl
implements _TimeOfDayOperations,
_TimeOfDayOperationsNC

public short hour;
public short minute;
public short second;

public TimeOfDay () ;

public TimeOfDay (short hour, short minute, short second) ;

//

There are a number of things to note about the generated code:

2. This is done for reasons of efficiency: providing the strong exception guarantee would require
more overhead than can be justified.

10.14 Mapping for Classes 359

10.14.1

10.14.2

1. The compiler generates “operations interfaces” called
_TimeOfDayOperations and TimeOfDayOperationsNC. These
interfaces contain a method for each Slice operation of the class.

2. The generated class TimeOfDay inherits (indirectly) from Ice.Object.
This means that all classes implicitly inherit from Ice.Object, which is the
ultimate ancestor of all classes. Note that Ice . Object is not the same as
Ice.ObjectPrx. In other words, you cannot pass a class where a proxy is
expected and vice versa.

If a class has only data members, but no operations, the compiler generates a
non-abstract class.

3. The generated class contains a public member for each Slice data member.

4. The generated class inherits member functions for each Slice operation from
the operations interfaces.

5. The generated class contains two constructors.

There is quite a bit to discuss here, so we will look at each item in turn.

Operations Interfaces

The methods in the <interface-name>Operations interface have an
additional trailing parameter of type Ice.Current, whereas the methods in the
__<interface-name>OperationsNC interface lack this additional trailing
parameter. The methods without the Current parameter simply forward to the
methods with a Current parameter, supplying a default Current. For now,
you can ignore this parameter and pretend it does not exist. (We look at it in more
detail in Section 32.6.)

If a class has only data members, but no operations, the compiler omits gener-
ating the <interface-name>Operationsand <inter-
face-name>OperationsNC interfaces.

Inheritance from Ice.Object

Like interfaces, classes implicitly inherit from a common base class,
Ice.Object. However, as shown in Figure 10.1, classes inherit from
Ice.Object instead of Ice.ObjectPrx (which is at the base of the inheri-
tance hierarchy for proxies). As a result, you cannot pass a class where a proxy is

360

Client-Side Slice-to-Java Mapping

expected (and vice versa) because the base types for classes and proxies are not
compatible.

‘ Ice.ObjectPrx

| Ice.Object ‘

Proxies... "’_’_‘ ‘ Classes... "’_’_‘
I T
I T
T T

Figure 10.1. Inheritance from Ice.ObjectPrx and Ice.Object.

Ice.Object contains a number of member functions:

package Ice;

public interface Object

{
boolean ice isA(String s) ;
boolean ice isA(String s, Current current);
void ice ping() ;
void ice ping(Current current);
String[] ice ids();
String[] ice ids(Current current) ;
String ice id();
String ice_id(Current current);
void ice_preMarshal () ;
void ice postUnmarshal () ;
DispatchStatus ice dispatch(
Request request,
DispatchInterceptorAsyncCallback cb) ;
}

The member functions of Ice.Object behave as follows:
®ice isA

This function returns true if the object supports the given type ID, and
false otherwise.

10.14 Mapping for Classes 361

10.14.3

®* ice ping
As for interfaces, ice ping provides a basic reachability test for the class.
* ice ids
This function returns a string sequence representing all of the type IDs
supported by this object, including : : Ice: :Object.
* ice id
This function returns the actual run-time type ID for a class. If you call

ice_id through a reference to a base instance, the returned type id is the
actual (possibly more derived) type ID of the instance.

®* ice preMarshal

The Ice run time invokes this function prior to marshaling the object’s state,
providing the opportunity for a subclass to validate its declared data members.

®* ice_postUnmarshal

The Ice run time invokes this function after unmarshaling an object’s state. A
subclass typically overrides this function when it needs to perform additional
initialization using the values of its declared data members.

®* ice dispatch

This function dispatches an incoming request to a servant. It is used in the
implementation of dispatch interceptors (see Section 32.23).

Note that the generated class does not override hashCode and equals. This
means that classes are compared using shallow reference equality, not value
equality (as is used for structures).

All Slice classes derive from Ice.Object viathe Ice.ObjectImpl
abstract base class. Object Impl implements the java.io.Serializable
interface to support Java’s serialization facility (see Section 10.15). Object -
Impl also supplies an implementation of clone that returns a shallow member-
wise copy.

Data Members of Classes

By default, data members of classes are mapped exactly as for structures and
exceptions: for each data member in the Slice definition, the generated class
contains a corresponding public data member.

If you wish to restrict access to a data member, you can modify its visibility
using the protected metadata directive. The presence of this directive causes the
Slice compiler to generate the data member with protected visibility. As a result,

362 Client-Side Slice-to-Java Mapping
the member can be accessed only by the class itself or by one of its subclasses. For
example, the TimeOfDay class shown below has the protected metadata directive
applied to each of its data members:
class TimeOfDay {

["protected"] short hour; // @ - 23

["protected"] short minute; // @0 - 59

["protected"] short second; // @ - 59

string format(); // Return time as hh:mm:ss
}s
The Slice compiler produces the following generated code for this definition:
public abstract class TimeOfDay extends Ice.ObjectImpl

implements TimeOfDayOperations,
_TimeOfDayOperationsNC

{

protected short hour;

protected short minute;

protected short second;

public TimeOfDay () ;

public TimeOfDay (short hour, short minute, short second) ;

//
!
For a class in which all of the data members are protected, the metadata directive
can be applied to the class itself rather than to each member individually. For
example, we can rewrite the TimeOfDay class as follows:
["protected"] class TimeOfDay {

short hour; // 0 - 23

short minute; // @ - 59

short second; // @ - 59

string format(); // Return time as hh:mm:ss
};
Refer to Section 10.16.3 for additional information on data members.

10.14.4 Operations of Classes

Operations of classes are mapped to abstract member functions in the generated
class. This means that, if a class contains operations (such as the format operation
of our TimeOfDay class), you must provide an implementation of the operation in
a class that is derived from the generated class. For example:

10.14 Mapping for Classes 363

public class TimeOfDayI extends TimeOfDay
public String format (Ice.Current current) {
DecimalFormat df
= (DecimalFormat)DecimalFormat.getInstance() ;

df .setMinimumIntegerDigits (2) ;

return new String(df.format (hour) + ":" +
df . format (minute) + ":" +
df.format (second)) ;

Class Factories

Having created a class such as TimeOfDayI, we have an implementation and we
can instantiate the TimeOfDay I class, but we cannot receive it as the return
value or as an out-parameter from an operation invocation. To see why, consider
the following simple interface:

interface Time {
TimeOfDay get();
};

When a client invokes the get operation, the Ice run time must instantiate and
return an instance of the TimeOfDay class. However, TimeOfDay is an abstract
class that cannot be instantiated. Unless we tell it, the Ice run time cannot magi-
cally know that we have created a TimeOfDayI class that implements the
abstract format operation of the TimeOfDay abstract class. In other words, we
must provide the Ice run time with a factory that knows that the TimeOfDay
abstract class has a TimeOfDayT concrete implementation. The Ice: : Communi-
cator interface provides us with the necessary operations:

module Ice {

Tocal interface ObjectFactory {
Object create(string type);
void destroy();

};

Jocal interface Communicator {
void addObjectFactory(ObjectFactory factory, string id);
ObjectFactory findObjectFactory(string 1id);
// ...

}s

364 Client-Side Slice-to-Java Mapping

To supply the Ice run time with a factory for our TimeOfDayT class, we must
implement the ObjectFactory interface:

class ObjectFactory implements Ice.ObjectFactory ({
public Ice.Object create(String type) {
if (type.equals(M.TimeOfDay.ice staticId())) {
return new TimeOfDayI () ;
}

assert (false) ;
return null;

}

public void destroy() {
// Nothing to do
}

}

The object factory’s create method is called by the Ice run time when it needs
to instantiate a TimeOfDay class. The factory’s destroy method is called by
the Ice run time when its communicator is destroyed.

The create method is passed the type ID (see Section 4.13) of the class to
instantiate. For our TimeOfDay class, the type ID is ": :M: : TimeOfDay". Our
implementation of create checks the type ID: if it matches, the method instanti-
ates and returns a TimeOfDayI object. For other type IDs, the method asserts
because it does not know how to instantiate other types of objects.

Note that we used the ice staticId method to obtain the type ID rather
than embedding a literal string. Using a literal type ID string in your code is
discouraged because it can lead to errors that are only detected at run time. For
example, if a Slice class or one of its enclosing modules is renamed and the literal
string is not changed accordingly, a receiver will fail to unmarshal the object and
the Ice run time will raise NoObjectFactoryException. By using
ice staticId instead, we avoid any risk of a misspelled or obsolete type ID,
and we can discover at compile time if a Slice class or module has been renamed.

Given a factory implementation, such as our ObjectFactory, we must
inform the Ice run time of the existence of the factory:

Ice.Communicator ic = ...;
ic.addObjectFactory (new ObjectFactory (),
M.TimeOfDay.ice staticId()) ;

Now, whenever the Ice run time needs to instantiate a class with the type ID
"::M::TimeOfDay", it calls the create method of the registered ObjectFac-
tory instance.

10.14 Mapping for Classes 365

10.14.5

The destroy operation of the object factory is invoked by the Ice run time
when the communicator is destroyed. This gives you a chance to clean up any
resources that may be used by your factory. Do not call destroy on the factory
while it is registered with the communicator—if you do, the Ice run time has no
idea that this has happened and, depending on what your destroy implementation
is doing, may cause undefined behavior when the Ice run time tries to next use the
factory.

The run time guarantees that destroy will be the last call made on the factory,
that is, create will not be called concurrently with destroy, and create will not
be called once destroy has been called. However, calls to create can be made
concurrently.

Note that you cannot register a factory for the same type ID twice: if you call
addObjectFactory with a type ID for which a factory is registered, the Ice run
time throws an AlreadyRegisteredException.

Finally, keep in mind that if a class has only data members, but no operations,
you need not create and register an object factory to transmit instances of such a
class. Only if a class has operations do you have to define and register an object
factory.

Class Constructors

Classes have a default constructor that default-constructs each data member. This
means members of primitive type are initialized to the equivalent of zero, and
members of reference type are initialized to null. Note that applications must
always explicitly initialize members of structure and enumerated types because
the Ice run time does not accept null as a legal value for these types.

If you wish to ensure that data members of primitive and enumerated types are
initialized to specific values, you can declare default values in your Slice defini-
tion (see Section 4.11.1). The default constructor initializes each of these data
members to its declared value.

The generated class also contains a second constructor that accepts one argu-
ment for each member of the class. This allows you to create and initialize a class
in a single statement, for example:

TimeOfDayI tod = new TimeOfDayI (14, 45, 00); // 14:45pm
For derived classes, the constructor requires an argument for every member of the

class, including inherited members. For example, consider the the definition from
Section 4.11.2 once more:

366

Client-Side Slice-to-Java Mapping

class TimeOfDay {
short hour;
short minute;
short second;

};

// 0 - 23
// @ - 59
// @ - 59

class DateTime extends TimeOfDay {

short day;
short month;
short year;

};

// 1 - 31
// 1 - 12
// 1753 onwards

The constructors for the generated classes are as follows:

public class TimeOfDay extends Ice.ObjectImpl

public TimeOfDay ()

{

public TimeOfDay (short hour, short minute, short second)

minute;
second;

{
this.hour = hour;
this.minute =
this.second =

!

//

}

public class DateTime

{

public DateTime ()

{
}

super () ;

extends TimeOfDay

public DateTime (short hour, short minute, short second,
short day, short month, short year)

super (hour, minute, second) ;

{
this.day = day;
this.month = month;
this.year = year;

}

//

10.15 Serializable Objects 367

10.15

If you want to instantiate and initialize a Dat eTime instance, you must either use
the default constructor or provide values for all of the data members of the
instance, including data members of any base classes.

Serializable Objects

In Java terminology, a serializable object typically refers to an object that imple-
ments the java.io.Serializable interface and therefore supports serial-
ization to and from a byte stream. All Java classes generated from Slice
definitions implement the java.io.Serializable interface.

In addition to serializing Slice types, applications may also need to incorpo-
rate foreign types into their Slice definitions. As discussed in Section 4.18, you
can pass Java serializable objects directly as operation parameters or as fields of
another data type. For example:

["java:serializable:SomePackage.JavaClass"]
sequence<byte> JavaObj;
struct MyStruct {
int i;
JavaObj o;
1

interface Example {
void op(JavaObj inObj, MyStruct s, out JavaObj outObj);
};

The generated code for MyStruct contains a member i of type int and a
member o of type SomePackage.JavaClass:

public final class MyStruct implements java.lang.Cloneable {
public int i;
public SomePackage.JavaClass o;

//
}

Similarly, the signature for op has parameters of type JavaClass and
MyStruct for the in-parameters, and Ice.Holder<SomePackage.Java-
Class> for the out-parameter. (Out-parameters are always passed as
Ice.Holder<class>.)

368

Client-Side Slice-to-Java Mapping

10.16

void op (SomePackage.JavaClass inObj,
MyStruct s,
Ice.Holder<SomePackage.JavaClass> outObj) ;

Of course, your client and server code must have an implementation of Java -
Class that derives from java.io.Serializable:

package SomePackage;

public class JavaClass implements java.io.Serializable

!/
}

You can implement this class in any way you see fit—the Ice run time does not
place any other requirements on the implementation.

Customizing the Java Mapping

10.16.1

You can customize the code that the Slice-to-Java compiler produces by anno-
tating your Slice definitions with metadata (see Section 4.17). This section
describes how metadata influences several aspects of the generated Java code.

Packages

By default, the scope of a Slice definition determines the package of its mapped
Java construct. A Slice type defined in a module hierarchy is mapped to a type
residing in the equivalent Java package (see Section 10.4 for more information on
the module mapping).

There are times when applications require greater control over the packaging
of generated Java classes. For instance, a company may have software develop-
ment guidelines that require all Java classes to reside in a designated package. One
way to satisfy this requirement is to modify the Slice module hierarchy so that the
generated code uses the required package by default. In the example below, we
have enclosed the original definition of Workflow: :Document in the modules
com: :acme so that the compiler will create the class in the com. acme package:

module com {
module acme {
module Workflow {
class Document {

// ...

10.16 Customizing the Java Mapping 369

3
There are two problems with this workaround:

1. It incorporates the requirements of an implementation language into the appli-
cation’s interface specification.

2. Developers using other languages, such as C++, are also affected.

The Slice-to-Java compiler provides a better way to control the packages of gener-
ated code through the use of global metadata (see Section 4.17). The example
above can be converted as follows:

[["java:package:com.acme"]]
module Workflow {
class Document {
/] ...
}s
}s

The global metadata directive java :package : com. acme instructs the
compiler to generate all of the classes resulting from definitions in this Slice file
into the Java package com. acme. The net effect is the same: the class for Docu-
ment is generated in the package com.acme . Workflow. However, we have
addressed the two shortcomings of the first solution by reducing our impact on the
interface specification: the Slice-to-Java compiler recognizes the package meta-
data directive and modifies its actions accordingly, whereas the compilers for
other language mappings simply ignore it.

Package Configuration Properties

Using global metadata to alter the default package of generated classes has ramifi-
cations for the Ice run time when unmarshaling exceptions and concrete class
types. The Ice run time dynamically loads generated classes by translating their
Slice type ids into Java class names. For example, the Ice run time translates the
Slice type id : : Workflow: : Document into the class name Work -
flow.Document.

However, when the generated classes are placed in a user-specified package,
the Ice run time can no longer rely on the direct translation of a Slice type id into a
Java class name, and therefore must be configured in order to successfully locate
the generated classes. Two configuration properties are supported:

370 Client-Side Slice-to-Java Mapping

® Tce.Package.Module=package

Associates a top—level3 Slice module with the package in which it was gener-
ated.

® Tce.Default.Package=package
Specifies a default package to use if other attempts to load a class have failed.

The behavior of the Ice run time when unmarshaling an exception or concrete
class is described below:

1. Translate the Slice type id into a Java class name and attempt to load the class.

2. If that fails, extract the top-level module from the type id and check for an
Ice.Package property with a matching module name. If found, prepend
the specified package to the class name and try to load the class again.

3. If that fails, check for the presence of Ice.Default .Package. If found,
prepend the specified package to the class name and try to load the class again.

4. If the class still cannot be loaded, the instance may be sliced according to the
rules described in Section 37.2.11.

Continuing our example from the previous section, we can define the following
property:
Ice.Package.Workflow=com.acme

Alternatively, we could achieve the same result with this property:

Ice.Default.Package=com.acme

10.16.2 Custom Types
One of the more powerful applications of metadata is the ability to tailor the Java
mapping for sequence and dictionary types to match the needs of your application.
Metadata
The metadata for specifying a custom type has the following format:

java:type:instance-type[:formal-typel

3. Only top-level module names are allowed; the semantics of global metadata prevent a nested
module from being generated into a different package than its enclosing module.

10.16 Customizing the Java Mapping 371

The formal type is optional; the compiler uses a default value if one is not defined.
The instance type must satisfy an is-A relationship with the formal type: either the
same class is specified for both types, or the instance type must be derived from
the formal type.

The Slice-to-Java compiler generates code that uses the formal type for all
occurrences of the modified Slice definition except when the generated code must
instantiate the type, in which case the compiler uses the instance type instead.

The compiler performs no validation on your custom types. Misspellings and
other errors will not be apparent until you compile the generated code.

Defining a Custom Sequence Type

Although the default mapping of a sequence type to a native Java array is efficient
and typesafe, it is not always the most convenient representation of your data. To
use a different representation, specify the type information in a metadata directive,
as shown in the following example:

["java:type:java.util.LinkedList<String>"]
sequence<string> StringlList;

It is your responsibility to use a type parameter for the Java class (String in the
example above) that is the correct mapping for the sequence’s element type.

The compiler requires the formal type to implement java.util.List<E>,
where E is the Java mapping of the element type. If you do not specify a formal
type, the compiler uses java.util.List<E> by default.

Note that extra care must be taken when defining custom types that contain
nested generic types, such as a custom sequence whose element type is also a
custom sequence. The Java compiler strictly enforces type safety, therefore any
compatibility issues in the custom type metadata will be apparent when the gener-
ated code is compiled.

Defining a Custom Dictionary Type

The default instance type for a dictionary is java.util.HashMap<K, V>,
where K is the Java mapping of the key type and V'is the Java mapping of the
value type. If the semantics of a HashMap are not suitable for your application,
you can specify an alternate type using metadata as shown in the example below:

["java:type:java.util.TreeMap<String, String>"]
dictionary<string, string> StringMap;

372

Client-Side Slice-to-Java Mapping

It is your responsibility to use type parameters for the Java class (String in the
example above) that are the correct mappings for the dictionary’s key and value
types.

The compiler requires the formal type to implement java.util.Map<K,
V>. If you do not specify a formal type, the compiler uses this type by default.

Note that extra care must be taken when defining dictionary types that contain
nested generic types, such as a dictionary whose element type is a custom
sequence. The Java compiler strictly enforces type safety, therefore any compati-
bility issues in the custom type metadata will be apparent when the generated code
is compiled.

Usage

You can define custom type metadata in a variety of situations. The simplest
scenario is specifying the metadata at the point of definition:

["java:type:java.util.LinkedList<String>"]
sequence<string> StringlList;

Defined in this manner, the Slice-to-Java compiler uses
java.util.List<Strings> (the default formal type) for all occurrences of
StringlList,and java.util.LinkedList<String> when it needs to
instantiate StringlList.

You may also specify a custom type more selectively by defining metadata for
a data member, parameter or return value. For instance, the mapping for the orig-
inal Slice definition might be sufficient in most situations, but a different mapping
is more convenient in particular cases. The example below demonstrates how to
override the sequence mapping for the data member of a structure as well as for
several operations:

sequence<string> StringSeq;

struct S {
["java:type:java.util.LinkedList<String>"] StringSeq seq;
};

interface I {
["java:type:java.util.ArrayList<String>"] StringSeq
modifiedReturnValue();

void modifiedInParam(
["java:type:java.util.ArraylList<String>"] StringSeq seq);

10.16 Customizing the Java Mapping 373

void modifiedOutParam(
out ["java:type:java.util.ArrayList<String>"]
StringSeq seq);
};

As you might expect, modifying the mapping for an operation’s parameters or
return value may require the application to manually convert values from the orig-
inal mapping to the modified mapping. For example, suppose we want to invoke
the modi fiedInParam operation. The signature of its proxy operation is shown
below:

void modifiedInParam(java.util.List<String> seq, Ice.Current curr)

The metadata changes the mapping of the seq parameter to java.util.List,
which is the default formal type. If a caller has a StringSeq value in the original
mapping, it must convert the array as shown in the following example:

String[] seq = new Stringl[2];

seqg[0] = "hi";

seqg[l] = "there";

IPrx proxy = ...;
proxy.modifiedInParam(java.util.Arrays.aslList (seq)) ;

Although we specified the instance type java.util.ArrayList<Strings>
for the parameter, we are still able to pass the result of asList because its return
type (Java.util.List<Strings) is compatible with the parameter’s formal
type declared by the proxy method. In the case of an operation parameter, the
instance type is only relevant to a servant implementation, which may need to
make assumptions about the actual type of the parameter.

Mapping for Modified Out Parameters

The mapping for an out parameter uses a generated “holder” class to convey the
parameter value (see Section 10.12.2). If you modify the mapping of an out
parameter, as discussed in the previous section, it is possible that the holder class
for the parameter’s unmodified type is no longer compatible with the custom type
you have specified. The holder class generated for StringSeq is shown below:

public final class StringSeqgHolder
{

public

StringSeqgHolder ()

{

}

374

Client-Side Slice-to-Java Mapping

10.16.3

public
StringSeqgHolder (String[] wvalue)

{
}

this.value = value;

public Stringl[] wvalue;

}

An out parameter of type StringSeq would normally map to a proxy method that
used StringSegHolder to hold the parameter value. When the parameter is
modified, as is the case with the modifiedOutParam operation, the Slice-to-Java
compiler cannot use StringSegHolder to hold an instance of
java.util.List<Strings>, because StringSegHolder is only appro-
priate for the default mapping to a native array.

As a result, the compiler handles these situations using instances of the
generic class Ice.Holder<T>, where Tis the parameter’s formal type.
Consider the following example:

sequence<string> StringSeq;

interface I {
void modifiedOutParam(
out ["java:type:java.util.ArrayList<String>"]
StringSeq seq);
b

The compiler generates the following mapping for the modi fiedOutParam proxy
method:

void modifiedOutParam (

Ice.Holder<java.util.List<java.lang.String> > seq,
Ice.Current curr)

The formal type of the parameter is java.util.List<Strings>, therefore
the holder class becomes Ice.Holder<java.util.List<String>>.

JavaBean Mapping

The Java mapping optionally generates JavaBean-style methods for the data
members of class, structure and exception types.

10.16 Customizing the Java Mapping 375

Generated Methods

For each data member val of type T, the mapping generates the following
methods:

public T getVal();
public void setVal(T v);

The mapping generates an additional method if T is the boo1 type:
public boolean isVal() ;

Finally, if Tis a sequence type with an element type E, two methods are generated
to provide direct access to elements:

public E getVal (int index) ;
public void setVal(int index, E v);

Note that these element methods are only generated for sequence types that use
the default mapping.

The Slice-to-Java compiler considers it a fatal error for a JavaBean method of
a class data member to conflict with a declared operation of the class. In this situ-
ation, you must rename the operation or the data member, or disable the genera-
tion of JavaBean methods for the data member in question.

Metadata

The JavaBean methods are generated for a data member when the member or its
enclosing type is annotated with the java : get set metadata. The following
example demonstrates both styles of usage:

sequence<int> IntSeq;

class C {
["java:getset"] int i;
double d;

1

["java:getset"]
struct S {
bool b;
string str;

};

["java:getset"]
exception E {

IntSeq seq;
};

376 Client-Side Slice-to-Java Mapping

JavaBean methods are generated for all members of struct S and exception E, but

for only one member of class C. Relevant portions of the generated code are shown
below:

public class C extends Ice.ObjectImpl
{

public int 1i;

public int

getI()

{
}

return 1i;

public void
setI(int 1)

public double d;

}

public final class S implements java.lang.Cloneable

{

public boolean b;

public boolean
getB ()

{
}

return b;

public void
setB(boolean b)

{
b = b;
}
public boolean
isB()
{

return b;

}

10.16 Customizing the Java Mapping 377

public String str;

public String
getStr()

{
}

return str;

public void
setStr(String _str)

{
}

str = _str;

}

public class E extends Ice.UserException

{

public int[] seq;

public int[]
getSeq()

{
}

public void
setSeqg(int[] _seq)

{
}

public int
getSeq(int _index)

{
}

public void
setSeqg(int _index, int val)

{

return seq;

seq = _seq;

return seql[index];

seqg[_index] = _val;

378 Client-Side Slice-to-Java Mapping

10.17 Asynchronous Method Invocation (AMI) 379

10.17

Asynchronous Method Invocation (AMI)

NOTE:

10.17.1

As of version 3.4, Ice provides a new API for asynchronous method invocation.
This section describes this APIL. You can find documentation for the previous API
in Appendix K. Note that the old API is deprecated and will be removed in a
future release.

Asynchronous Method Invocation (AMI) is the term used to describe the client-
side support for the asynchronous programming model. AMI supports both
oneway and twoway requests, but unlike their synchronous counterparts, AMI
requests never block the calling thread. When a client issues an AMI request, the
Ice run time hands the message off to the local transport buffer or, if the buffer is
currently full, queues the request for later delivery. The application can then
continue its activities and poll or wait for completion of the invocation, or receive
a callback when the invocation completes.

AMI is transparent to the server: there is no way for the server to tell whether
a client sent a request synchronously or asynchronously.

Basic Asynchronous API
Consider the following simple Slice definition:

module Demo {
interface Employees {
string getName(int number);
};
b

Proxy Methods

Besides the synchronous proxy methods, slice2java generates the following
asynchronous proxy methods:*

4. There are four additional overloads of begin getName that we discuss in Sections 10.17.4
and 10.17.6.

380

Client-Side Slice-to-Java Mapping

public interface EmployeesPrx extends Ice.ObjectPrx

{
//

public Ice.AsyncResult begin getName (int number) ;
public Ice.AsyncResult begin getName (
int number,
java.util.Map<String, String> ctx);

public String end getName (Ice.AsyncResult _ result);

}

As you can see, the single getName operation results in begin getName and
end_getName methods. (The begin method is overloaded so you can pass a
per-invocation context—see Section 32.12).

* The begin getName method sends (or queues) an invocation of getName.
This method does not block the calling thread.

* The end getName method collects the result of the asynchronous invoca-
tion. If, at the time the calling thread calls end_getName, the result is not
yet available, the calling thread blocks until the invocation completes. Other-
wise, if the invocation completed some time before the call to
end_getName, the method returns immediately with the result.

A client could call these methods as follows:

EmployeesPrx e = ...;
Ice.AsyncResult r = e.begin getName (99) ;

// Continue to do other things here...

String name = e.end getName (r) ;

Because begin getName does not block, the calling thread can do other things
while the operation is in progress.

Note that begin getName returns a value of type AsyncResult. This
value contains the state that the Ice run time requires to keep track of the asyn-
chronous invocation. You must pass the AsyncResult that is returned by the
begin_method to the corresponding end_ method.

The begin method has one parameter for each in-parameter of the corre-
sponding Slice operation. Similarly, the end method has one out-parameter for
each out-parameter of the corresponding Slice operation (plus the AsyncRe-
sult parameter). For example, consider the following operation:

double op(int inpl, string inp2, out bool outpl, out Tong outp2);

10.17 Asynchronous Method Invocation (AMI) 381

10.17.2

The begin op and end_op methods have the following signature:
Ice.AsyncResult begin op(int inpl, String inp2);
Ice.AsyncResult begin op(int inpl, String inp2,
java.util.Map<String, String> ctx);
double end op(Ice.BooleanHolder outpl, Ice.LongHolder outp2,
Ice.AsyncResult r);

Exception Handling

If an invocation raises an exception, the exception is thrown by the end method,
even if the actual error condition for the exception was encountered during the
begin_method (“on the way out”). The advantage of this behavior is that all
exception handling is located with the code that calls the end_method (instead of
being present twice, once where the begin method is called, and again where
the end method is called).

There is one exception to the above rule: if you destroy the communicator and
then make an asynchronous invocation, the begin_method throws Communi -
catorDestroyedException. This is necessary because, once the run time is
finalized, it can no longer throw an exception from the end method.

The only other exception that is thrown by the begin and end methods is
java.lang.IllegalArgumentException. This exception indicates that
you have used the API incorrectly. For example, the begin method throws this
exception if you call an operation that has a return value or out-parameters on a
oneway proxy. Similarly, the end method throws this exception if you use a
different proxy to call the end_ method than the proxy you used to call the
begin_method, or if the AsyncResult you pass to the end_ method was
obtained by calling the begin_method for a different operation.

The AsyncResult Class

The AsyncResult that is returned by the begin method encapsulates the
state of the asynchronous invocation:

public class AsyncResult {
public Communicator getCommunicator () ;
public Connection getConnection() ;
public ObjectPrx getProxy () ;
public String getOperation() ;

public boolean isCompleted() ;
public void waitForCompleted() ;

382

Client-Side Slice-to-Java Mapping

}

public boolean isSent () ;
public void waitForSent () ;

public boolean sentSynchronously() ;

The methods have the following semantics:

Communicator getCommunicator ()

This method returns the communicator that sent the invocation.
Connection getConnection/()

This method returns the connection that was used for the invocation.
ObjectPrx getProxy ()

This method returns the proxy that was used to call the begin method.
String getOperation ()

This method returns the name of the operation.

boolean isCompleted()

This method returns true if, at the time it is called, the result of an invocation
is available, indicating that a call to the end method will not block the caller.
Otherwise, if the result is not yet available, the method returns false.

void waitForCompleted()

This method blocks the caller until the result of an invocation becomes avail-
able.

boolean isSent ()

When you call the begin method, the Ice run time attempts to write the
corresponding request to the client-side transport. If the transport cannot
accept the request, the Ice run time queues the request for later transmission.
isSent returns true if, at the time it is called, the request has been written to
the local transport (whether it was initially queued or not). Otherwise, if the
request is still queued, isSent returns false.

void waitForSent ()

This method blocks the calling thread until a request has been written to the
client-side transport.

boolean sentSynchronously ()

This method returns true if a request was written to the client-side transport
without first being queued. If the request was initially queued, sent Syn-

10.17 Asynchronous Method Invocation (AMI) 383

10.17.3

chronously returns false (independent of whether the request is still in the
queue or has since been written to the client-side transport).

Polling for Completion

The AsyncResult methods allow you to poll for call completion. Polling is
useful in a variety of cases. As an example, consider the following simple inter-
face to transfer files from client to server:

interface FileTransfer

{
};

The client repeatedly calls send to send a chunk of the file, indicating at which
offset in the file the chunk belongs. A naive way to transmit a file would be along
the following lines:

void send(int offset, ByteSeq bytes);

FileHandle file = open(...);
FileTransferPrx ft = ...;
int chunkSize = ...;

int offset = 0;

while (!file.eof()) {
bytel[] bs;
bs = file.read(chunkSize); // Read a chunk
ft.send (offset, bs); // Send the chunk

offset += bs.length;

}

This works, but not very well: because the client makes synchronous calls, it
writes each chunk on the wire and then waits for the server to receive the data,
process it, and return a reply before writing the next chunk. This means that both
client and server spend much of their time doing nothing—the client does nothing
while the server processes the data, and the server does nothing while it waits for
the client to send the next chunk.

Using asynchronous calls, we can improve on this considerably:

FileHandle file = open(...);
FileTransferPrx ft = ...;
int chunkSize = ...;

int offset = 0;

LinkedList<Ice.AsyncResult> results =
new LinkedList<Ice.AsyncResults>() ;
int numRequests = 5;

384 Client-Side Slice-to-Java Mapping

while (!file.eof()) {
bytel[]l bs;
bs = file.read(chunkSize) ;

// Send up to numRequests + 1 chunks asynchronously.
Ice.AsyncResult r = ft.begin send(offset, bs);
offset += bs.length;

// Wait until this request has been passed to the transport.
r.waitForSent () ;
results.add(r) ;

// Once there are more than numRequests, wait for the least
// recent one to complete.
while (results.size() > numRequests) {
Ice.AsyncResult r = results.getFirst();
results.removeFirst () ;
r.waitForCompleted() ;

}

// Wait for any remaining requests to complete.
while (results.size() > 0) {
Ice.AsyncResult r = results.getFirst();
results.removeFirst () ;
r.waitForCompleted() ;

}

With this code, the client sends up to numRequests + 1 chunks before it waits
for the least recent one of these requests to complete. In other words, the client
sends the next request without waiting for the preceding request to complete, up to
the limit set by numRequests. In effect, this allows the client to “keep the pipe
to the server full of data™: the client keeps sending data, so both client and server
continuously do work.

Obviously, the correct chunk size and value of numRequests depend on the
bandwidth of the network as well as the amount of time taken by the server to
process each request. However, with a little testing, you can quickly zoom in on
the point where making the requests larger or queuing more requests no longer
improves performance. With this technique, you can realize the full bandwidth of
the link to within a percent or two of the theoretical bandwidth limit of a native
socket connection.

10.17 Asynchronous Method Invocation (AMI) 385

10.17.4 Generic Completion Callbacks

The begin_method is overloaded to allow you to provide completion callbacks.
Here are the corresponding methods for the getName operation:

Ice.AsyncResult begin getName (int number, Ice.Callback _ cb);

Ice.AsyncResult begin getName (int number,
java.util.Map<String, String> _ ctx,
Ice.Callback _ cb);

The second version of begin getName lets you override the default context.
Following the in-parameters, the begin_method accepts a parameter of type
Ice.Callback, which is a callback class with a completed method that you
must provide. The Ice run time invokes the completed method when an asyn-
chronous operation completes. For example:

public class MyCallback extends Ice.Callback

{

public void completed(Ice.AsyncResult r)

{

EmployeesPrx e = (EmployeesPrx)r.getProxy () ;

try {
String name = e.end getName (r) ;
System.out.println("Name is: " + name) ;

} catch (Ice.LocalException ex) {
System.err.println ("Exception is: " + ex);

}
}

Note that your callback class must derive from Ice.Callback. The implemen-
tation of your callback method must call the end_ method. The proxy for the call
is available via the get Proxy method on the AsyncResult that is passed by
the Ice run time. The return type of get Proxy is Ice.ObjectPrx, so you
must down-cast the proxy to its correct type.

Your callback method should catch and handle any exceptions that may be
thrown by the end method. If an operation can throw user exceptions, this
means that you need an additional catch handler for Ice.UserException (or
catch all possible user exceptions explicitly). If you allow an exception to escape
from the callback method, the Ice run time produces a log entry by default and
ignores the exception. (You can disable the log message by setting the property
Ice.Warn.AMICallback to zero.)

386

Client-Side Slice-to-Java Mapping

10.17.5

To inform the Ice run time that you want to receive a callback for the comple-
tion of the asynchronous call, you pass the callback instance to the begin
method:

EmployeesPrx e = ...;

MyCallback cb = new MyCallback() ;
e.begin getName (99, cb);

A more terse way to make an invocation is to use an anonymous class:

EmployeesPrx e = ...;

e.begin getName (
99,
new Ice.AsyncCallback()

{

public void completed(Ice.AsyncResult r)

{

EmployeesPrx p = (EmployeesPrx)r.getProxy() ;
try {
String name = p.end getName (r) ;
System.out.println("Name is: " + name);
} catch (Ice.LocalException ex) ({
System.err.println ("Exception: " + ex);

}
}
)

This style is useful particularly for callbacks that do only a small amount of work
because the code that starts the call and the code that processes the results are
physically close together.

Sharing State Between the begin and end Method

It is common for the end_ method to require access to some state that is estab-
lished by the code that calls the begin method. As an example, consider an
application that asynchronously starts a number of operations and, as each opera-
tion completes, needs to update different user interface elements with the results.
In this case, the begin method knows which user interface element should
receive the update, and the end_ method needs access to that element.

Assuming that we have a Widget class that designates a particular user inter-
face element, you could pass different widgets by storing the widget to be used as
a member of your callback class:

10.17 Asynchronous Method Invocation (AMI) 387

10.17.6

public class MyCallback extends Ice.AsyncCallback

{
public MyCallback (Widget w)
{
W o= Ww;
}
private Widget w;
public void completed(Ice.AsyncResult r)
{
EmployeesPrx e = (EmployeesPrx)r.getProxy () ;
try {
String name = e.end getName (r) ;
_w.writeString (name) ;
} catch (Ice.LocalException ex) {
System.err.println ("Exception is: " + ex);
}
}
}

For this example, we assume that widgets have a writeString method that
updates the relevant Ul element.

When you call the begin method, you pass the appropriate callback
instance to inform the end_ method how to update the display:

EmployeesPrx e = ...;
Widget widgetl R
Widget widget2 R

// Invoke the getName operation with different widget callbacks.
e.begin getName (99, new MyCallback (widgetl)) ;
e.begin getName (24, new MyCallback (widget2)) ;

The callback class provides a simple and effective way for you to pass state
between the point where an operation is invoked and the point where its results are
processed. Moreover, if you have a number of operations that share common state,
you can pass the same callback instance to multiple invocations. (If you do this,
your callback methods may need to use synchronization.)

Type-Safe Completion Callbacks

The generic callback API we saw in Section 10.17.4 is not entirely type-safe:

388 Client-Side Slice-to-Java Mapping

* You must down-cast the return value of get Proxy to the correct proxy type
before you can call the end method.

* You must call the correct end_ method to match the operation called by the
begin_method.

* You must remember to catch exceptions when you call the end method; if
you forget to do this, you will not know that the operation failed.

slice2java generates an additional type-safe API that takes care of these
chores for you. To use type-safe callbacks, you must implement a callback class
that provides two callback methods:

* a response method that is called if the operation succeeds
* an exception method that is called if the operation raises an exception

Your callback class must derive from the base class that is generated by
slice2java. The name of this base class is

<module>.Callback <interface> <operationsx. Here is a callback
class for an invocation of the getName operation:

public class MyCallback extends Demo.Callback Employees getName

{

public void response (String name)

{
}

System.out.println("Name is: " + name);

public void exception(Ice.LocalException ex)

{
}

System.err.println ("Exception is: " + ex);

}

The response callback parameters depend on the operation signature. If the
operation has non-void return type, the first parameter of the response call-
back is the return value. The return value (if any) is followed by a parameter for
each out-parameter of the corresponding Slice operation, in the order of declara-
tion.

The exception callback is invoked if the invocation fails because of an Ice
run time exception. If the Slice operation can also raise user exceptions, your call-
back class must supply an additional overloading of exception that accepts an
argument of type Ice.UserException.

The proxy methods are overloaded to accept this callback instance:

10.17 Asynchronous Method Invocation (AMI) 389

10.17.7

10.17.8

Ice.AsyncResult begin getName (int number,
Callback Employees getName _ cb);

Ice.AsyncResult begin getName (int number,
java.util.Map<String, String> _ ctx,
Callback Employees getName _ cb);

You pass the callback to an invocation as you would with the generic API:

EmployeesPrx e = ...;

MyCallback cb = new MyCallback() ;
e.begin getName (99, cb);

Oneway Invocations

You can invoke operations via oneway proxies asynchronously, provided the oper-
ation has void return type, does not have any out-parameters, and does not raise
user exceptions. If you call the begin method on a oneway proxy for an opera-
tion that returns values or raises a user exception, the begin method throws an
IllegalArgumentException.

The callback methods looks exactly as for a twoway invocation. For the
generic API, the Ice run time does not call the completed callback method
unless the invocation raised an exception during the begin method (“on the
way out”). For the type-safe API, the response method is never called.

Flow Control

Asynchronous method invocations never block the thread that calls the begin
method: the Ice run time checks to see whether it can write the request to the local
transport. If it can, it does so immediately in the caller’s thread. (In that case,
AsyncResult.sentSynchronously returns true.) Alternatively, if the
local transport does not have sufficient buffer space to accept the request, the Ice
run time queues the request internally for later transmission in the background. (In
that case, AsyncResult .sentSynchronously returns false.)

This creates a potential problem: if a client sends many asynchronous requests
at the time the server is too busy to keep up with them, the requests pile up in the
client-side run time until, eventually, the client runs out of memory.

The API provides a way for you to implement flow control by counting the
number of requests that are queued so, if that number exceeds some threshold, the

390

Client-Side Slice-to-Java Mapping

client stops invoking more operations until some of the queued operations have
drained out of the local transport.

For the generic API, you can override the sent method:

public class MyCallback extends Ice.AsyncCallback

{

public void completed(Ice.AsyncResult r)

{
}

//

public void sent (Ice.AsyncResult r)

{
}

!/
}

You inform the Ice run time that you want to be informed when a call has been
passed to the local transport as usual:

e.begin getName (99, new MyCallback()) ;

If the Ice run time can immediately pass the request to the local transport, it does
so and invokes the sent method from the thread that calls the begin method.
On the other hand, if the run time has to queue the request, it calls the sent
method from a different thread once it has written the request to the local trans-
port. In addition, you can find out from the AsyncResult that is returned by the
begin method whether the request was sent synchronously or was queued, by
calling sentSynchronously.

For the generic API, the sent method has the following signature:
void sent (Ice.AsyncResult r);
For the type-safe API, the signature is:
void sent (boolean sentSynchronously) ;

For the generic API, you can find out whether the request was sent synchronously
by calling sent Synchronously on the AsyncResult. For the type-safe
API, the boolean sentSynchronously parameter provides the same informa-
tion.

The sent methods allow you to limit the number of queued requests by
counting the number of requests that are queued and decrementing the count when
the Ice run time passes a request to the local transport.

10.17 Asynchronous Method Invocation (AMI) 391

10.17.9

10.17.10

10.17.11

Batch Requests

Applications that send batched requests (see Section 32.16) can either flush a
batch explicitly or allow the Ice run time to flush automatically. The proxy method
ice flushBatchRequests performs an immediate flush using the synchro-
nous invocation model and may block the calling thread until the entire message
can be sent. Ice also provides asynchronous versions of this method so you can
flush batch requests asynchronously.

begin ice flushBatchRequests and
end ice flushBatchRequests are proxy methods that flush any batch
requests queued by that proxy.

In addition, similar methods are available on the communicator and the
Connection object that is returned by AsyncResult .getConnection.
These methods flush batch requests sent via the same communicator and via the
same connection, respectively.

Concurrency

The Ice run time always invokes your callback methods from a separate thread,
with one exception: it calls the sent callback from the thread calling the
begin_method if the request could be sent synchronously. In the sent call-
back, you know which thread is calling the callback by looking at the sentSyn-
chronously member or parameter.

Limitations

AMI invocations cannot be sent using collocated optimization. If you attempt to
invoke an AMI operation using a proxy that is configured to use collocation opti-
mization, the Ice run time raises CollocationOptimizationException if the
servant happens to be collocated; the request is sent normally if the servant is not
collocated. Section 32.21 provides more information about this optimization and
describes how to disable it when necessary.

392 Client-Side Slice-to-Java Mapping
10.18 Slice Compiler
10.18.1 slice2java Command-Line Options

The Slice-to-Java compiler, slice2java, offers the following command-line
options in addition to the standard options described in Section 4.20:

* --tie
Generate tie classes (see Section 12.7).
® --impl

Generate sample implementation files. This option will not overwrite an
existing file.

® --impl-tie

Generate sample implementation files using ties (see Section 12.7). This
option will not overwrite an existing file.

® —--checksum CLASS

Generate checksums for Slice definitions into the class CLASS. The given
class name may optionally contain a package specifier. The generated class
contains checksums for all of the Slice files being translated by this invocation
of the compiler. For example, the command below causes slice2java to
generate the file Checksums . java containing the checksums for the Slice
definitions in Filel.ice and File2.ice:

slice2java --checksum Checksums Filel.ice File2.ice

®* --stream
Generate streaming helper functions for Slice types (see Section 35.2).
¢ --meta META

Define the global metadata directive META. Using this option is equivalent to
defining the global metadata META in each named Slice file, as well as in any
file included by a named Slice file.

Global metadata specified with - -meta overrides any corresponding global
metadata directive in the files being compiled.

10.18 Slice Compiler 393

10.18.2 Ant Task

The Ice for Java build system makes extensive use of an ant task named
Slice2JavaTask that automates the Slice-to-Java compiler and may also be
useful for Ice developers. The task and its supporting classes reside in the JAR file
named ant -ice. jar, which normally can be found in the 1ib subdirectory of
your Ice installation.

Execution Environment

The S1ice2JavaTask must be able to locate and spawn the slice2java
executable. You can specify the directory of your Ice installation by defining the
ice.home ant property or the ICE_HOME environment variable, in which case
the task assumes that the Slice compiler’s executable is located in the bin subdi-
rectory of the specified installation directory. For example, if ICE_HOME is set to
/opt/Ice on Linux, the task assumes that the executable path name is
/opt/Ice/bin/slice2java. Furthermore, the task also configures its
shared library search path (if necessary for your platform) to ensure the executable
can resolve its library dependencies.

If both ice.home and ICE_HOME are defined, ice . home takes prece-
dence. If neither are defined, the task assumes that the executable can already be
found in your PATH and that your shared library search path is configured
correctly.

Finally, you can use a task parameter to specify the full path name of the Slice
compiler. Again, the task assumes that your shared library search path is config-
ured correctly.

Dependencies

The task minimizes recompilation by maintaining dependencies between Slice
files. The task stores this information in a file named . depend in the output
directory and updates the dependencies after each invocation. (You can specify a
different name for this file using a task parameter.)

Note that the task does not maintain dependencies between a Slice file and its
generated Java source files. Consequently, removing the generated Java source
files does not cause the task to recompile a Slice file. In fact, the task only
compiles a Slice file when any of the following conditions are true:

* no dependency file exists

* no dependency information is found for the Slice file

394

Client-Side Slice-to-Java Mapping

¢ the modification time of the Slice file is later than the modification time of the

dependency file

¢ the Slice file includes another Slice file that is eligible for compilation

The simplest way to force the task to recompile all of your Slice files is to remove

the dependency file.

Parameters

The task supports the parameters listed in Table 10.2:

Table 10.2. Ant task parameters

Attribute

Description

Required

checksum

Specifies the name of a class to contain the
Slice checksums. See Section 10.19 for more
information.

No

dependencyfile

Specifies an alternate name for the dependency
file. If you specify a relative filename, it is rel-
ative to ant’s current working directory. If not
specified, the task uses the name . depend by
default. If you do not define this attribute and
outputdir is defined, the task creates the
.depend file in the designated output direc-
tory (see outputdir).

ice

Instructs the Slice compiler to permit symbols
that have the reserved prefix Ice. This param-
eter is used in the Ice build system and is not
normally required by applications.

No

outputdir

Specifies the directory in which the Slice com-
piler generates Java source files. If not speci-
fied, the task uses ant’s current working
directory.

stream

Indicates whether to generate streaming sup-
port (see Section 35.2). If not specified,
streaming support is not generated.

tie

Indicates whether to generate TIE classes (see
Section 12.7). If not specified, TIE classes are
not generated.

translator

Specifies the path name of the Slice compiler.

If not specified, the task locates the Slice com-
piler in its execution environment as described
on page 393.

10.18 Slice Compiler 395

For the flag parameters (ice, stream, and tie), legal positive values are on,
true, or yes; negative values are of £, false, or no.

Nested Elements
Several Slice compiler options must be defined as nested elements of the task:
* define

Defines a preprocessor macro. The element supports the attributes name and
(optionally) value, as shown below:

<define name="FOO">
<define name="BAR" value="5">

These definitions are equivalent to the command-line options -DFOO and
-DBAR=5, respectively.

e fileset

Specifies the set of Slice files to be compiled. Refer to the ant documentation
of its FileSet type for more information.

®* includepath

Specifies the include file search path for Slice files. In ant terminology,
includepath is a path-like structure. Refer to the ant documentation of its
Path type for more information.

®* meta

Defines a global metadata directive in each Slice file as well as in each
included Slice file. The element supports name and value attributes.

Using the Task

Define the following taskdef element in your project’s build file to enable the
task:

<taskdef name="slice2java" classname="Slice2JavaTask"/>

This configuration assumes that ant -ice. jar is already present in ant’s class
path. Alternatively, you can specify the JAR explicitly as follows:

<taskdef name="slice2java" classpath="/opt/Ice/lib/ant-ice.jar"
classname="Slice2JavaTask"/>

Once activated, you can invoke the task to translate your Slice files. The example
shown below is a simplified version of the ant project for the hello demo:

396

Client-Side Slice-to-Java Mapping

<target name="generate" depends="init"s>
<mkdir dir="generated"/>
<slice2java outputdir="generated">
<fileset dir="." includes="Hello.ice"/>
</slice2java>
</target>

<target name="compile" depends="generate">
<mkdir dir="classes"/>
<javac srcdir=".:generated" destdir="classes">
<exclude name="generated/**"/>

</javacs>
</target>

<target name="all" depends="compile"/>

<target name="clean"s>
<delete dir="generated"/>
<delete dir="classes"/>
</target>

This project demonstrates some practices that we encourage you to adopt in your
own projects. First, it is helpful to keep the source files generated by the Slice
compiler separate from your application’s source files by dedicating an output
directory for the exclusive use of the Slice compiler. Doing so helps to minimize
confusion and makes it easier to configure a source-code management system to
ignore generated files.

Next, we also recommend that you include a clean target in your ant project
that removes this output directory. Assuming that the dependency file (. depend)
is also stored in this directory, removing the output directory is an efficient way to
clean up your project’s source tree and guarantees that all of your Slice files are
recompiled in the next build.

Finally, after seeing the exclude element in the invocation of javac you
might infer that the generated code was not being compiled, but the presence of
the output directory in the srcdir attribute ensures that the generated code is
included in the build. The purpose of the exclude element is to prevent ant from
including the generated files twice in its target list.

10.19 Using Slice Checksums 397

10.19 Using Slice Checksums

As described in Section 4.21, the Slice compilers can optionally generate check-
sums of Slice definitions. For slice2java, the - -checksum option causes
the compiler to generate a new Java class that adds checksums to a static map
member. Assuming we supplied the option - -checksum Checksums to
slice2java, the generated class Checksums . java looks like this:

public class Checksums
public static java.util.Map checksums;
!

The read-only map checksums is initialized automatically prior to first use; no
action is required by the application.

In order to verify a server’s checksums, a client could simply compare the
dictionaries using the equals method. However, this is not feasible if it is
possible that the server might return a superset of the client’s checksums. A more
general solution is to iterate over the local checksums as demonstrated below:

java.util.Map serverChecksums =

java.util.Iterator i = Checksums.checksums.entrySet () .iterator () ;
while (i.hasNext ()) {

java.util.Map.Entry e = (java.util.Map.Entry)i.next();

String id = (String)e.getKey() ;

String checksum = (String)e.getValue() ;

String serverChecksum = (String)serverChecksums.get (id) ;

if (serverChecksum == null) {

// No match found for type id!

} else if (!checksum.equals (serverChecksum)) {
// Checksum mismatch!

}

}

In this example, the client first verifies that the server’s dictionary contains an
entry for each Slice type ID, and then it proceeds to compare the checksums.

Chapter 11
Developing a File System Client in
Java

11.1 Chapter Overview
In this chapter, we present the source code for a Java client that accesses the file
system we developed in Chapter 5 (see Chapter 13 for the corresponding server).
11.2 The Java Client

We now have seen enough of the client-side Java mapping to develop a complete
client to access our remote file system. For reference, here is the Slice definition
once more:

module Filesystem {
interface Node {
idempotent string name();

1

exception GenericError {
string reason;

};
sequence<string> Lines;

interface File extends Node {

399

400

Developing a File System Client in Java

idempotent Lines read();
idempotent void write(Lines text) throws GenericError;

}s
sequence<Nodex=> NodeSeq;

interface Directory extends Node {
idempotent NodeSeq 1ist();
1
};

To exercise the file system, the client does a recursive listing of the file system,
starting at the root directory. For each node in the file system, the client shows the
name of the node and whether that node is a file or directory. If the node is a file,
the client retrieves the contents of the file and prints them.

The body of the client code looks as follows:
import Filesystem.*;
public class Client ({

// Recursively print the contents of directory "dir" in

// tree fashion. For files, show the contents of each file.
// The "depth" parameter is the current nesting level

// (for indentation).

static void

listRecursive (DirectoryPrx dir, int depth)

{
char[] indentCh = new char[++depth];
java.util.Arrays.fill (indentCh, '\t');
String indent = new String(indentCh) ;

NodePrx[] contents = dir.list();

for (int i = 0; i < contents.length; ++i) {
DirectoryPrx subdir
= DirectoryPrxHelper.checkedCast (contents[i]) ;
FilePrx file
= FilePrxHelper.uncheckedCast (contents[i]) ;
System.out.println(indent + contents[i] .name () +
(subdir != null ? " (directory):" : " (file):"));
if (subdir != null) {
listRecursive (subdir, depth);
} else {

11.2 The Java Client

401

}

String[] text = file.read();
for (int j = 0; j < text.length; ++3j)
System.out.println(indent + "\t" + text[j]);

public static void
main (String[] args)

{

int status = 0;
Ice.Communicator ic = null;
try {

// Create a communicator
//

ic = Ice.Util.initialize(args) ;

// Create a proxy for the root directory
//
Ice.ObjectPrx base
= ic.stringToProxy ("RootDir:default -p 10000") ;
if (base == null)
throw new RuntimeException ("Cannot create proxy") ;

// Down-cast the proxy to a Directory proxy
//
DirectoryPrx rootDir
= DirectoryPrxHelper.checkedCast (base) ;
if (rootDir == null)
throw new RuntimeException("Invalid proxy") ;

// Recursively list the contents of the root directory

//

System.out.println("Contents of root directory:");
listRecursive (rootDir, O0);

} catch (Ice.LocalException e) ({

e.printStackTrace () ;
status = 1;

} catch (Exception e) {

System.err.println(e.getMessage()) ;
status = 1;

(ic != null) {
// Clean up
//

try {

402

Developing a File System Client in Java

}

ic.destroy () ;
} catch (Exception e) ({
System.err.println(e.getMessage()) ;
status = 1;
}
}

System.exit (status) ;

After importing the Filesystem package, the Client class defines two
methods: 1istRecursive, which is a helper function to print the contents of
the file system, and main, which is the main program. Let us look at main first:

1. The structure of the code in main follows what we saw in Chapter 3. After

initializing the run time, the client creates a proxy to the root directory of the
file system. For this example, we assume that the server runs on the local host
and listens using the default protocol (TCP/IP) at port 10000. The object iden-
tity of the root directory is known to be RootDir.

2. The client down-casts the proxy to DirectoryPrx and passes that proxy to

listRecursive, which prints the contents of the file system.

Most of the work happens in 1istRecursive. The function is passed a proxy
to a directory to list, and an indent level. (The indent level increments with each
recursive call and allows the code to print the name of each node at an indent level
that corresponds to the depth of the tree at that node.) ListRecursive calls the

11st operation on the directory and iterates over the returned sequence of nodes:

1. The code does a checkedCast to narrow the Node proxy to a Directory

proxy, as well as an uncheckedCast to narrow the Node proxy to a File
proxy. Exactly one of those casts will succeed, so there is no need to call
checkedCast twice: if the Node is-a Directory, the code uses the Direc-
toryPrx returned by the checkedCast; if the checkedCast fails, we
know that the Node is-a File and, therefore, an uncheckedCast is sufficient
togeta FilePrx.

In general, if you know that a down-cast to a specific type will succeed, it is

preferable to use an uncheckedCast instead of a checkedCast because
an uncheckedCast does not incur any network traffic.

. The code prints the name of the file or directory and then, depending on which

cast succeeded, prints " (directory) " or " (file) " following the name.

. The code checks the type of the node:

* If it is a directory, the code recurses, incrementing the indent level.

11.3 Summary 403

* If it is a file, the code calls the read operation on the file to retrieve the file
contents and then iterates over the returned sequence of lines, printing each
line.

Assume that we have a small file system consisting of two files and a directory as
follows:

O = Directory RootDir
@ -re

Coleridge README

Kubla_Khan

Figure 11.1. A small file system.

The output produced by the client for this file system is:

Contents of root directory:
README (file):
This file system contains a collection of poetry.
Coleridge (directory):
Kubla Khan (file):
In Xanadu did Kubla Khan
A stately pleasure-dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.

Note that, so far, our client (and server) are not very sophisticated:
* The protocol and address information are hard-wired into the code.

® The client makes more remote procedure calls than strictly necessary; with
minor redesign of the Slice definitions, many of these calls can be avoided.

We will see how to address these shortcomings in Chapter 38 and Chapter 34.

11.3 Summary

This chapter presented a very simple client to access a server that implements the
file system we developed in Chapter 5. As you can see, the Java code hardly
differs from the code you would write for an ordinary Java program. This is one of

404

Developing a File System Client in Java

the biggest advantages of using Ice: accessing a remote object is as easy as
accessing an ordinary, local Java object. This allows you to put your effort where
you should, namely, into developing your application logic instead of having to
struggle with arcane networking APIs. As we will see in Chapter 13, this is true
for the server side as well, meaning that you can develop distributed applications
easily and efficiently.

Chapter 12
Server-Side Slice-to-Java Mapping

12.1

Chapter Overview

12.2

In this chapter, we present the server-side Slice-to-Java mapping (see Chapter 10
for the client-side mapping). Section 12.3 discusses how to initialize and finalize
the server-side run time, sections 12.4 to 12.7 show how to implement interfaces
and operations, and Section 12.8 discusses how to register objects with the server-
side Ice run time. Finally, Section 12.9 shows how to implement operations asyn-
chronously.

Introduction

The mapping for Slice data types to Java is identical on the client side and server
side. This means that everything in Chapter 10 also applies to the server side.
However, for the server side, there are a few additional things you need to know,
specifically:

* how to initialize and finalize the server-side run time

* how to implement servants

* how to pass parameters and throw exceptions

* how to create servants and register them with the Ice run time.

405

406

Server-Side Slice-to-Java Mapping

12.3

We discuss these topics in the remainder of this chapter.

The Server-Side main Method

The main entry point to the Ice run time is represented by the local interface

Ice: :Communicator. As for the client side, you must initialize the Ice run time by
calling Ice.Util.initialize before you can do anything else in your
server. Ice.Util.initialize returns a reference to an instance of an
Ice.Communicator:

public class Server {
public static void

main (String[] args)
int status = 0;
Ice.Communicator ic = null;
try {
ic = Ice.Util.initialize(args) ;
//

} catch (Exception e) {
e.printStackTrace () ;
status = 1;

}

Ice.Util.initialize accepts the argument vector that is passed to main
by the operating system. The function scans the argument vector for any
command-line options that are relevant to the Ice run time, but does not remove
those op‘[ions.1 If anything goes wrong during initialization, initialize
throws an exception.

Before leaving your main function, you must call Communicator: :destroy.
The destroy operation is responsible for finalizing the Ice run time. In particular,
destroy waits for any operation implementations that are still executing in the
server to complete. In addition, destroy ensures that any outstanding threads

1. The semantics of Java arrays prevents Ice.Util.initialize from modifying the size of
the argument vector. However, another overloading of Ice.Util.initialize is provided
that allows the application to obtain a new argument vector with the Ice options removed.

12.3 The Server-Side main Method 407

are joined with and reclaims a number of operating system resources, such as file
descriptors and memory. Never allow your main function to terminate without
calling destroy first; doing so has undefined behavior.

The general shape of our server-side main function is therefore as follows:

public class Server {
public static void
main (String[] args)

{
int status = 0;
Ice.Communicator ic = null;
try {
ic = Ice.Util.initialize(args);
//
} catch (Exception e) {
e.printStackTrace () ;
status = 1;
}
if (ic != null) {
try {
ic.destroy () ;
} catch (Exception e) {
e.printStackTrace() ;
status = 1;
}
}
System.exit (status) ;
}

}

Note that the code places the call to Ice: :initialize into a try block and
takes care to return the correct exit status to the operating system. Also note that
an attempt to destroy the communicator is made only if the initialization
succeeded.

12.3.1 The Ice.Application Class

The preceding structure for the main function is so common that Ice offers a
class, Ice.Application, that encapsulates all the correct initialization and
finalization activities. The synopsis of the class is as follows (with some detail
omitted for now):

408

Server-Side Slice-to-Java Mapping

package Ice;

public enum SignalPolicy { HandleSignals, NoSignalHandling }

public abstract class Application

public
public
public

public

public

public
public
public

!/

Application()
Application(SignalPolicy signalPolicy)
final int main(String appName, String[] args)

final int main(String appName, String[] args,
String configFile)

final int main(String appName, String[] args,
InitializationData initData)

abstract int run(Stringl[] args) ;
static String appName ()

static Communicator communicator ()

The intent of this class is that you specialize Ice.Application and imple-
ment the abstract run method in your derived class. Whatever code you would
normally place in main goes into the run method instead. Using Ice.Appli-
cation, our program looks as follows:

public class Server extends Ice.Application {

public

int

run (String[] args)

{
//

Server code here...

return 0;

public

static void

main (String[] args)

{

Server app = new Server();

12.3 The Server-Side main Method 409

int status = app.main("Server", args);
System.exit (status) ;

}

Note that Application.main is overloaded: you can pass an optional file
name or an InitializationData structure (see Section 32.3 and
Section 30.9).

If you pass a configuration file name to main, the settings in this file are over-
ridden by settings in a file identified by the ICE_CONFIG environment variable
(if defined). Property settings supplied on the command line take precedence over
all other settings.

The Application.main function does the following:

1. It installs an exception handler for java.lang.Exception. If your code
fails to handle an exception, Application.main prints the name of an
exception and a stack trace on System. err before returning with a non-zero
return value.

2. Itinitializes (by calling Ice.Util.initialize) and finalizes (by calling
Communicator.destroy)a communicator. You can get access to the
communicator for your server by calling the static communicator accessor.

3. It scans the argument vector for options that are relevant to the Ice run time
and removes any such options. The argument vector that is passed to your run
method therefore is free of Ice-related options and only contains options and
arguments that are specific to your application.

4. It provides the name of your application via the static appName member
function. The return value from this call is the first argument in the call to
Application.main, so you can get at this name from anywhere in your
code by calling Ice.Application.appName (which is usually required
for error messages). In the example above, the return value from appName
would be Server.

5. It installs a shutdown hook that properly shuts down the communicator.

6. It installs a per-process logger (see Section 32.19.5) if the application has not
already configured one. The per-process logger uses the value of the
Ice.ProgramName property (see Section 30.8) as a prefix for its messages
and sends its output to the standard error channel. An application can specify
an alternate logger as described in Section 32.19.

Using Ice.Application ensures that your program properly finalizes the Ice
run time, whether your server terminates normally or in response to an exception.

410

Server-Side Slice-to-Java Mapping

We recommend that all your programs use this class; doing so makes your life
easier. In addition Ice.Application also provides features for signal
handling and configuration that you do not have to implement yourself when you
use this class.

Using Ice.Application on the Client Side

You can use Ice.Application for your clients as well: simply implement a
class that derives from Ice.Application and place the client code into its
run method. The advantage of this approach is the same as for the server side:
Ice.Application ensures that the communicator is destroyed correctly even
in the presence of exceptions.

Catching Signals

The simple server we developed in Chapter 3 had no way to shut down cleanly:
we simply interrupted the server from the command line to force it to exit. Termi-
nating a server in this fashion is unacceptable for many real-life server applica-
tions: typically, the server has to perform some cleanup work before terminating,
such as flushing database buffers or closing network connections. This is particu-
larly important on receipt of a signal or keyboard interrupt to prevent possible
corruption of database files or other persistent data.

Java does not provide direct support for signals, but it does allow an applica-
tion to register a shutdown hook that is invoked when the JVM is shutting down.
There are several events that trigger JVM shutdown, such as a call to
System.exit or an interrupt signal from the operating system, but the shut-
down hook is not provided with the reason for the shut down.

Ice.Application registers a shutdown hook by default, allowing you to
cleanly terminate your application prior to JVM shutdown.

package Ice;

public abstract class Application

//

synchronized public static void destroyOnInterrupt ()
synchronized public static void shutdownOnInterrupt ()
synchronized public static void setInterruptHook (Thread t)
synchronized public static void defaultInterrupt ()
synchronized public static boolean interrupted()

}

The functions behave as follows:

12.3 The Server-Side main Method 411

® destroyOnInterrupt

This function installs a shutdown hook that calls destroy on the communi-
cator. This is the default behavior.

® shutdownOnInterrupt

This function installs a shutdown hook that calls shutdown on the communi-
cator.

®* setInterruptHook

This function installs a custom shutdown hook that takes responsibility for
performing whatever action is necessary to terminate the application. Refer to
the Java documentation for Runt ime . addShutdownHook for more infor-
mation on the semantics of shutdown hooks.

® defaultInterrupt
This function removes the shutdown hook.
* interrupted

This function returns true if the shutdown hook caused the communicator to
shut down, false otherwise. This allows us to distinguish intentional shutdown
from a forced shutdown that was caused by the JVM. This is useful, for
example, for logging purposes.

By default, Ice.Application behaves as if destroyOnInterrupt was
invoked, therefore our server main function requires no change to ensure that the
program terminates cleanly on JVM shutdown. (You can disable this default shut-
down hook by passing the enumerator NoSignalHandling to the constructor.
In that case, shutdown is not intercepted and terminates the VM.) However, we
add a diagnostic to report the occurrence, so our main function now looks like:

public class Server extends Ice.Application {
public int
run (String[] args)

{

// Server code here...

if (interrupted())
System.err.println (appName () + ": terminating");

return 0;

}

public static void
main (String[] args)

412

Server-Side Slice-to-Java Mapping

Server app = new Server();
int status = app.main("Server", args);
System.exit (status) ;

}

During the course of normal execution, the JVM does not terminate until all non-
daemon threads have completed. If an interrupt occurs, the JVM ignores the status
of active threads and terminates as soon as it has finished invoking all of the
installed shutdown hooks.

In a subclass of Tce.Application, the default shutdown hook (as
installed by destroyOnInterrupt) blocks until the application’s main thread
completes. As a result, an interrupted application may not terminate successfully
if the main thread is blocked. For example, this can occur in an interactive applica-
tion when the main thread is waiting for console input. To remedy this situation,
the application can install an alternate shutdown hook that does not wait for the
main thread to finish:

public class Server extends Ice.Application {
class ShutdownHook extends Thread {
public void
run ()

{

try

{
}
catch(Ice.LocalException ex)

{
}

communicator () .destroy () ;

ex.printStackTrace () ;

}

public int
run (String[] args)

{

setInterruptHook (new ShutdownHook ()) ;

//

12.4 Mapping for Interfaces 413

12.4

After replacing the default shutdown hook using set InterruptHook, the
JVM will terminate as soon as the communicator is destroyed.

Ice.Application and Properties

Apart from the functionality shown in this section, Ice.Application also
takes care of initializing the Ice run time with property values. Properties allow
you to configure the run time in various ways. For example, you can use proper-
ties to control things such as the thread pool size or port number for a server. The
main function of Ice.Application is overloaded; the second version allows
you to specify the name of a configuration file that will be processed during
initialization. We discuss Ice properties in more detail in Chapter 30.

Limitations of Ice.Application

Ice.Application is a singleton class that creates a single communicator. If
you are using multiple communicators, you cannot use Ice.Application.
Instead, you must structure your code as we saw in Chapter 3 (taking care to
always destroy the communicator).

Mapping for Interfaces

12.4.1

The server-side mapping for interfaces provides an up-call API for the Ice run
time: by implementing member functions in a servant class, you provide the hook
that gets the thread of control from the Ice server-side run time into your applica-
tion code.

Skeleton Classes

On the client side, interfaces map to proxy classes (see Section 5.12). On the
server side, interfaces map to skeleton classes. A skeleton is a class that has a pure
virtual member function for each operation on the corresponding interface. For
example, consider the Slice definition for the Node interface we defined in
Chapter 5 once more:

414

Server-Side Slice-to-Java Mapping

module Filesystem {
interface Node {
idempotent string name();
}s
//
};

The Slice compiler generates the following definition for this interface:
package Filesystem;

public interface NodeOperations

{
}

String name (Ice.Current current) ;

public interface NodeOperationsNC

{
}

String name() ;

public interface Node extends Ice.Object,
_NodeOperations,
_NodeOperationsNC {}

public abstract class NodeDisp extends Ice.ObjectImpl
implements Node
{

}

// Mapping-internal code here...

The important points to note here are:

® As for the client side, Slice modules are mapped to Java packages with the
same name, so the skeleton class definitions are part of the Filesystem
package.

¢ For each Slice interface <interface-name>, the compiler generates Java
interfaces <interface-name>Operations and
__<interface-name>OperationsNC (_NodeOperations and
_NodeOperationsNC in this example). These interfaces contains a
member function for each operation in the Slice interface. (You can ignore the
Ice.Current parameter for the time being—we discuss it in detail in
Section 32.6.)

12.4 Mapping for Interfaces 415

* For each Slice interface <interface-name>, the compiler generates a Java
interface <interface-name> (Node in this example). That interface
extends Ice.Object and the two operations interfaces.

* For each Slice interface <interface-name>, the compiler generates an
abstract class _<interface-name>Disp (_NodeDisp in this example).
This abstract class is the actual skeleton class; it is the base class from which
you derive your servant class.

12.4.2 Servant Classes

In order to provide an implementation for an Ice object, you must create a servant
class that inherits from the corresponding skeleton class. For example, to create a
servant for the Node interface, you could write:

package Filesystem;
public final class NodeI extends NodeDisp {

public NodelI (String name)

{
}

_name = name;

public String name (Ice.Current current)

{
}

return _name;

private String name;

}

By convention, servant classes have the name of their interface with an I-suffix,
so the servant class for the Node interface is called NodeI. (This is a convention
only: as far as the Ice run time is concerned, you can choose any name you prefer
for your servant classes.) Note that NodeI extends NodeDisp, that is, it
derives from its skeleton class.

As far as Ice is concerned, the NodeT class must implement only a single
method: the name method that it inherits from its skeleton. This makes the servant
class a concrete class that can be instantiated. You can add other member func-
tions and data members as you see fit to support your implementation. For
example, in the preceding definition, we added a _name member and a

416

Server-Side Slice-to-Java Mapping

12.5

constructor. (Obviously, the constructor initializes the _name member and the
name function returns its value.)

Normal and idempotent Operations

Whether an operation is an ordinary operation or an idempotent operation has no
influence on the way the operation is mapped. To illustrate this, consider the
following interface:

interface Example {
void normalOp();
idempotent void idempotentOp();
idempotent string readonlyOp();
};

The operations class for this interface looks like this:

public interface ExampleOperations

{

void normalOp (Ice.Current current) ;
void idempotentOp (Ice.Current current) ;
String readonlyOp (Ice.Current current) ;

}

Note that the signatures of the member functions are unaffected by the idempo-
tent qualifier.

Parameter Passing

For each parameter of a Slice operation, the Java mapping generates a corre-
sponding parameter for the corresponding method in the
_<interface-name>Operations interface. In addition, every operation
has an additional, trailing parameter of type Ice.Current. For example, the
name operation of the Node interface has no parameters, but the name member
function of the _NodeOperations interface has a single parameter of type
Ice.Current. We explain the purpose of this parameter in Section 32.6 and
will ignore it for now.

To illustrate the rules, consider the following interface that passes string
parameters in all possible directions:

12.6 Raising Exceptions 417

12.6

module M {
interface Example {
string op(string sin, out string sout);
}s
}s

The generated skeleton class for this interface looks as follows:

public interface ExampleOperations

{

String op(String sin, Ice.StringHolder sout,
Ice.Current current) ;

}

As you can see, there are no surprises here. For example, we could implement op
as follows:

public final class Examplel extends M. ExampleDisp {

public String op(String sin, Ice.StringHolder sout,
Ice.Current current)

System.out .println(sin) ; // In params are initialized
sout.value = "Hello World!"; // Assign out param
return "Done'";

}

This code is in no way different from what you would normally write if you were
to pass strings to and from a function; the fact that remote procedure calls are
involved does not impact on your code in any way. The same is true for parame-
ters of other types, such as proxies, classes, or dictionaries: the parameter passing
conventions follow normal Java rules and do not require special-purpose API
calls.

Raising Exceptions

To throw an exception from an operation implementation, you simply instantiate
the exception, initialize it, and throw it. For example:

!/

public void
write (String[] text, Ice.Current current)

418

Server-Side Slice-to-Java Mapping

12.7

throws GenericError

// Try to write file contents here...

// Assume we are out of space...

if (error) {
GenericError e = new GenericError () ;
e.reason = "file too large";
throw e;

}

If you throw an arbitrary Java run-time exception (such as a ClassCastEx-
ception), the Ice run time catches the exception and then returns an Unknown-
Exception to the client. Similarly, if you throw an “impossible” user exception (a
user exception that is not listed in the exception specification of the operation), the
client receives an UnknownUserException.

If you throw an Ice run-time exception, such as MemoryLimitException, the
client receives an UnknownLocalException.? For that reason, you should never
throw system exceptions from operation implementations. If you do, all the client
will see is an UnknownLocalException, which does not tell the client anything
useful.

Tie Classes

The mapping to skeleton classes we saw in Section 12.4 requires the servant class
to inherit from its skeleton class. Occasionally, this creates a problem: some class
libraries require you to inherit from a base class in order to access functionality
provided by the library; because Java does not support multiple inheritance, this
means that you cannot use such a class library to implement your servants because
your servants cannot inherit from both the library class and the skeleton class
simultaneously.

To allow you to still use such class libraries, Ice provides a way to write
servants that replaces inheritance with delegation. This approach is supported by
tie classes. The idea is that, instead of inheriting from the skeleton class, you

2. There are three run-time exceptions that are not changed to UnknownLocalException when
returned to the client: ObjectNotExistException, OperationNotExistException, and
FacetNotExistException. We discuss these exceptions in more detail in Chapter 33.

12.7 Tie Classes 419

simply create a class (known as an implementation class or delegate class) that
contains methods corresponding to the operations of an interface. You use the

- -tie option with the slice2java compiler to create a tie class. For example,
for the Node interface we saw in Section 12.4.1, the - - tie option causes the
compiler to create exactly the same code as we saw previously, but to also emit an
additional tie class. For an interface <interface-name>, the generated tie class
has the name <interface-name>Tie:

package Filesystem;
public class NodeTie extends NodeDisp implements Ice.TieBase {
public NodeTie() {}

public
